Skip to main content
Log in

Sol-gel and polyurethane based flame retardant and water repellent coating for Palm/PES nonwovens composite

  • Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, a new commercial and industrial value-added nonwoven textile fabrics based on natural fiber was developed. These nonwovens have been firstly produced using a needling technic by combining palm and polyester fibers in the weight ratio of 75:25 respectively. Then, they were coated with different silica-based solutions to enhance their water repellent and flame retardant features. For this aim, chloropropyltriethoxysilane (CPTS), tetraethylorthosilicate (TEOS), and polyurethane were achieved to nonwoven fabrics via the sol-gel process. The morphological analysis of samples was performed using Scanning Electron Microscopy. FTIR analysis was used to determinate the chemical structure of nonwovens. The mechanical properties of developed nonwoven materials have been studied according to ISO 13934–1 standard. The thermal properties of materials were investigated using thermal gravimetric analysis (TG). The result confirmed that the mechanical properties of Palm/ Polyester nonwovens coated by CPTS or TEOS were improved as well as their thermal stability and flame resistance. The water absorption capacity, the rain test according to ISO 9073–6, the AATCC 22 spray-rating standard, and the contact angle analysis were performed to evaluate the water-repellent properties of untreated and treated nonwovens. We have found that all coated nonwovens with CPTS exhibit good water-repellent properties.

Highlights

  • The needle punching nonwoven made from Palm/Polyester blends (75 wt %/25 wt %) was manufactured and functionalized using sol-gel process with CPTS and TEOS precursors by impregnation method.

  • Polyurethane was used for untreated and treated nonwovens with two precursors (CPTS and TEOS). The percentage of polyurethane was set at 5% and the order of treatments has also been studied.

  • The physical, mechanical, morphological, and thermal properties have been comparatively assessed.

  • All simples coated with CPTS have good tensile strength, water repellency, thermal stability, and flame retardancy compared to other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ismail WNW (2016) Sol–gel technology for innovative fabric finishing—a review. J Sol-Gel Sci Technol 78:698–707. https://doi.org/10.1007/s10971-016-4027-y

    Article  CAS  Google Scholar 

  2. Maity S, Singha K, Gon DP, Paul P, Singha M (2012) A review on jute nonwovens: manufacturing, properties and applications. Int J Text Sci 1:36–43. https://doi.org/10.5923/j.textile.20120105.02

    Article  Google Scholar 

  3. Anuar NIS, Zakaria S, Gan S, Chia CH, Wang C, Harun J (2019) Comparison of the morphological and mechanical properties of oil palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Ind Crop Prod 127:55–65. https://doi.org/10.1016/j.indcrop.2018.09.056

    Article  CAS  Google Scholar 

  4. Kenned JJ (2020) Characterization of indentation damage resistance and thermal diffusivity of needle‐punched Musa sapientum cellulosic fiber/unsaturated polyester composite laminates using IR thermography. Polym Compos 41:2933–2946. https://doi.org/10.1002/pc.25588

    Article  CAS  Google Scholar 

  5. Sajid L, Azmami O, El ahmadi Z, Benayada A, Gmouh S (2019) Extraction and characterization of palm fibers and their use to produce wool-and polyester-blended nonwovens. J Ind Text. https://doi.org/10.1177/2F1528083719877007

  6. Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a review J Thermoplast Compos Mater 22:135–162. https://doi.org/10.1177/2F0892705708091860

    Article  CAS  Google Scholar 

  7. Gaiolas C, Costa AP, Nunes M, Silva MJS, Belgacem MN (2008) Grafting of paper by silane coupling agents using cold‐plasma discharges. Plasma Process Polym 5:444–452. https://doi.org/10.1002/ppap.200700149

    Article  CAS  Google Scholar 

  8. Seol J-H, Won J-H, Yoon K-S, Hong YT, Lee S-Y (2011) SiO2 nanoparticles-coated poly (paraphenylene terephthalamide) nonwovens as reinforcing porous substrates for proton-conducting, sulfonated poly (arylene ether sulfone)-impregnated composite membranes. Solid State Ionics 190:30–37. https://doi.org/10.1016/j.ssi.2011.03.015

    Article  CAS  Google Scholar 

  9. Jinde P, Naik R, Rakshit A (2019) Characterization and synthesis of polyester and viscose nonwovens fabrics embedded with nanoporous amorphous silica. J Text Inst 110:972–979. https://doi.org/10.1080/00405000.2018.1534305

    Article  CAS  Google Scholar 

  10. Joshi M, Butola BS (2013) Application technologies for coating, lamination and finishing of technical textiles. In: Advances in the dyeing and finishing of technical textiles. Woodhead Publishing 355-411. https://doi.org/10.1533/9780857097613.2.355

  11. Tang X, Yan X (2017) Dip-coating for fibrous materials: mechanism, methods and applications. J Sol-Gel Sci Technol 81:378–404. https://doi.org/10.1007/s10971-016-4197-7

    Article  CAS  Google Scholar 

  12. Massella D, Giraud S, Guan J, Ferri A, Salaün F (2019) Textiles for health: a review of textile fabrics treated with chitosan microcapsules. Environ Chem Lett 17:1787–1800. https://doi.org/10.1007/s10311-019-00913-w

    Article  CAS  Google Scholar 

  13. Weidner D, Schwartz L, Eley R (2019) Numerical modeling of the spray coating of spinning bodies. J Coat Technol Res 16:363–376. https://doi.org/10.1007/s11998-018-0131-y

    Article  CAS  Google Scholar 

  14. Mahltig B, Haufe H, Böttcher H (2005) Functionalisation of textiles by inorganic sol–gel coatings. J Mater Chem 15:4385–4398. https://doi.org/10.1039/B505177K

    Article  CAS  Google Scholar 

  15. Alongi J, Ciobanu M, Malucelli G (2012) Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr Polym 87:2093–2099. https://doi.org/10.1016/j.carbpol.2011.10.032

    Article  CAS  Google Scholar 

  16. Boukhriss A, Gmouh S, Hannach H, Roblin J-P, Cherkaoui O, Boyer D (2016) Treatment of cotton fabrics by ionic liquid with PF 6−anion for enhancing their flame retardancy and water repellency. Cellulose 23:3355–3364. https://doi.org/10.1007/s10570-016-1016-9

    Article  CAS  Google Scholar 

  17. Bentis A, Boukhriss A, Grancaric AM, El Bouchti M, El Achaby M, Gmouh S (2019) Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 26:2139–2153. https://doi.org/10.1007/s10570-018-2206-4

    Article  CAS  Google Scholar 

  18. Kowalczyk D, Brzezinski S, Kaminska I, Wrobel S, Mizerska U, Fortuniak W, Piorkowska E, Svyntkivska M, Makowski T (2019) Electrically conductive composite textiles modified with graphene using sol-gel method. J Alloy Compd 784:22–28. https://doi.org/10.1016/j.jallcom.2018.12.368

    Article  CAS  Google Scholar 

  19. Pollini M, Paladini F, Licciulli A, Maffezzoli A, Nicolais L, Sannino A (2012) J Appl Polym Sci 125:2239–2244. https://doi.org/10.1002/app.36444

    Article  CAS  Google Scholar 

  20. Bohan AJ, Salman GK, Ahmed DS (2019) Enhanced bioactivity of pure ZnO and ZnO-Ag nanocomposite using Sol-Gel method for self-cleaning application. Int J Pharm Sci 10:3649–3656. https://doi.org/10.26452/ijrps.v10i4.1748

    Article  CAS  Google Scholar 

  21. Estekhraji SAZ, Amiri S (2017) Sol–gel preparation and characterization of antibacterial and self-cleaning hybrid nanocomposite coatings. J Coat Technol Res 14:1335–1343. https://doi.org/10.1007/s11998-017-9932-7

    Article  CAS  Google Scholar 

  22. El messoudi M, Boukhriss A, Cherkaoui O, El kouali M, Gmouh S (2020) Adsorption–desorption kinetics of silica coated on textile fabrics by the sol–gel process. J Coat Technol Res 17:371–380. https://doi.org/10.1007/s11998-019-00281-8

    Article  CAS  Google Scholar 

  23. Cheng S, Shen D, Zhu X, Tian X, Zhou D, Fan L-J (2009) Preparation of nonwoven polyimide/silica hybrid nanofiberous fabrics by combining electrospinning and controlled in situ sol–gel techniques. EUR POLYM J 45:2767–2778. https://doi.org/10.1016/j.eurpolymj.2009.06.021

    Article  CAS  Google Scholar 

  24. Gurav JL, Rao AV, Bangi UK (2009) Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor. J Alloy Compd 471:296–302. https://doi.org/10.1016/j.jallcom.2008.03.076

    Article  CAS  Google Scholar 

  25. Abbasi-Firouzjah M, Shokri B (2020) Deposition of high transparent and hard optical coating by tetraethylorthosilicate plasma polymerization. Thin Solid Films 698:137857. https://doi.org/10.1016/j.tsf.2020.137857

    Article  CAS  Google Scholar 

  26. Yin Y, Wang C (2013) Water-repellent functional coatings through hybrid SiO2/HTEOS/CPTS sol on the surfaces of cellulose fibers. Colloids Surf A Physicochem Eng Asp 417:120–125. https://doi.org/10.1016/j.colsurfa.2012.10.027

    Article  CAS  Google Scholar 

  27. Nadi A, Boukhriss A, Bentis A, Jabrane E, Gmouh S (2018) Evolution in the surface modification of textiles: a review. Text Prog 50:67–108. https://doi.org/10.1080/00405167.2018.1533659

    Article  Google Scholar 

  28. Byrne C (2000) in: Horrocks AR and Anand SC (Eds) Technical textiles market–an overview. Handbook of Technical Textile, Woodhead Publishing, Cambridge. p. 559

  29. Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G (2011) Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments. J Appl Polym Sci 119:1961–1969. https://doi.org/10.1002/app.32954

    Article  CAS  Google Scholar 

  30. Hou A, Shi Y, Yu Y (2009) Preparation of the cellulose/silica hybrid containing cationic group by sol–gel crosslinking process and its dyeing properties. Carbohydr Polym 77:201–205. https://doi.org/10.1016/j.carbpol.2008.12.022

    Article  CAS  Google Scholar 

  31. Bentis A, Boukhriss A, Boyer D, Gmouh S (2017) Development of flame retardant cotton fabric based on ionic liquids via sol-gel technique. IOP Conference Series: Mater Sci Eng 254. https://doi.org/10.1088/1757-899X/254/12/122001

  32. Boukhriss A, Boyer D, Hannache H, Roblin JP, Mahiou R, Cherkaoui O, Therias S, Gmouh S (2015) Sol–gel based water repellent coatings for textiles. Cellulose 22:1415–1425. https://doi.org/10.1007/s10570-015-0565-7

    Article  CAS  Google Scholar 

  33. Zhao H, Han H (2020) Synthesis and characterization of functionalized SBA-15 silica through template removal. J Solid State Chem. https://doi.org/10.1016/j.jssc.2019.121074

  34. Horrocks A (2019) Smart flame retardant textile coatings and laminates. In: Smart Textile Coatings and Laminates, 2nd edn. Elsevier, pp 205-236. https://doi.org/10.1016/B978-0-08-102428-7.00010-9

  35. Wortmann M, Frese N, Hes L, Gölzhäuser A, Moritzer E, Ehrmann A (2019) Improved abrasion resistance of textile fabrics due to polymer coatings J Ind Text 49:572–583. https://doi.org/10.1177/2F1528083718792655

    Article  CAS  Google Scholar 

  36. Bhuiyan MR, Wang L, Shanks RA, Ding J (2019) Polyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfort. J Mater Sci 54:9267–9281. https://doi.org/10.1007/s10853-019-03495-8

    Article  CAS  Google Scholar 

  37. Jayakumar R, Nanjundan S, Prabaharan M (2006) Metal-containing polyurethanes, poly (urethane–urea) s and poly (urethane–ether) s: a review. React Funct Polym 66:299–314. https://doi.org/10.1016/j.reactfunctpolym.2004.12.008

    Article  CAS  Google Scholar 

  38. Kang YK, Park CH, Kim J, Kang T (2007) Application of electrospun polyurethane web to breathable water-proof fabrics. J Fiber Polym 8:564–570. https://doi.org/10.1007/BF02875881

    Article  CAS  Google Scholar 

  39. Pan Y-J, Hsieh C-T, Huang C-L, Huang C-H, Lou C-W, Li C-W, Lin J-H (2015) Sound absorbent, flame retardant warp knitting spacer fabrics: manufacturing techniques and characterization evaluations. Fiber Polym 16:2682–2688. https://doi.org/10.1007/s12221-015-5576-3

    Article  Google Scholar 

  40. Ekici B, Kentli A, Küçük H (2012) Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Arch Acoust 37:515–520

    Article  Google Scholar 

  41. Dang A, Li H, Li T, Zhao T, Xiong C, Zhuang Q, Shang Y, Chen X, Ji X (2016) Preparation and pyrolysis behavior of modified coal tar pitch as C/C composites matrix precursor. J Anal Appl Pyrol 119:18–23. https://doi.org/10.1016/j.jaap.2016.04.002

    Article  CAS  Google Scholar 

  42. Ayres E, Oréfice RL, Yoshida MI (2007) Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions Eur Polym J 43:3510–3521. https://doi.org/10.1016/j.eurpolymj.2007.05.014

    Article  CAS  Google Scholar 

  43. Hajjou H, Saâdi L, Waqif M (2017) Synthesis of cordierite using industrial waste fly ash. Arab J Geosci 10:359. https://doi.org/10.1007/s12517-017-3156-0

    Article  CAS  Google Scholar 

  44. Veloo KV, Ibrahim NAS (2020) Solid phase extraction using chloro propyl functionalised sol‐gel hybrid sorbent for simultaneous determination of organophosphorus pesticides in selected fruit samples. J Sep Sci https://doi.org/10.1002/jssc.201901237

  45. Soleimani E, Yaesoobi N, Ghasempour HR (2018) MgBr2 supported on Fe3O4@ SiO2~ urea nanoparticle: an efficient catalyst for ortho‐formylation of phenols and oxidation of benzylic alcohols. Appl Organomet Chem 32:e4006. https://doi.org/10.1002/aoc.4006

    Article  CAS  Google Scholar 

  46. Naheed S, Mehmood F, Ahmad HB, Ahmad W, Zakria G (2013) Synthesis of novel Schiff base doped sol–gel silicas. J Sol-Gel Sci Technol 68:294–301. https://doi.org/10.1007/s10971-013-3166-7

    Article  CAS  Google Scholar 

  47. Amroune S, Bezazi A, Dufresne A, Scarpa F, Imad A (2019) Investigation of the date palm fiber for green composites reinforcement: thermo-physical and mechanical properties of the fiber. J Nat Fibers:1-18. https://doi.org/10.1080/15440478.2019.1645791

  48. Tomyangkul S, Pongmuksuwan P, Harnnarongchai W, Chaochanchaikul K (2016) Enhancing sound absorption properties of open-cell natural rubber foams with treated bagasse and oil palm fibers J Reinf Plast Comp 35:688–697. https://doi.org/10.1177/2F0731684415627295

    Article  Google Scholar 

  49. Rawal A, Saraswat H (2011) Pore size distribution of hybrid nonwoven geotextiles Geotext Geomembranes 29:363–367. https://doi.org/10.1016/j.geotexmem.2010.12.006

    Article  Google Scholar 

  50. Dubois G, Volksen W, Magbitang T, Miller RD, Gage DM, Dauskardt RH (2007) Molecular network reinforcement of sol–gel glasses. Adv Mater 19:3989–3994. https://doi.org/10.1002/adma.200701193

    Article  CAS  Google Scholar 

  51. Croissant JG, Fatieiev Y, Almalik A, Khashab NM (2018) Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater 7:1700831. https://doi.org/10.1002/adhm.201700831

    Article  CAS  Google Scholar 

  52. Zhang Q, Wang YL, Xia Y, Zhang PF, Kirk TV, Chen XD (2019) Textile‐only capacitive sensors for facile fabric integration without compromise of wearability. Adv Mater Technol 4:1900485. https://doi.org/10.1002/admt.201900485

    Article  Google Scholar 

  53. Ouadil B, Amadine O, Essamlali Y, Cherkaoui O, Zahouily M (2019) A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite. Colloids Surf A Physicochem Eng Asp 579:123713. https://doi.org/10.1016/j.colsurfa.2019.123713

    Article  CAS  Google Scholar 

  54. Sair S, Mansouri S, Tanane O, Abboud Y, El Bouari A (2019) Alfa fiber-polyurethane composite as a thermal and acoustic insulation material for building applications. SN Appl Sci 1:667. https://doi.org/10.1007/s42452-019-0685-z

    Article  CAS  Google Scholar 

  55. Alongi J, Malucelli G (2012) State of the art and perspectives on sol–gel derived hybrid architectures for flame retardancy of textiles. J Mater Chem 22:21805–21809. https://doi.org/10.1039/C2JM32513F

    Article  CAS  Google Scholar 

  56. Fu J, Yang F, Chen G, Zhang G, Huang C, Guo Z (2019) A facile coating with water-repellent and flame-retardant properties on cotton fabric. New J Chem 43:10183–10189. https://doi.org/10.1039/C9NJ02240F

    Article  CAS  Google Scholar 

Download references

Author contributions

(All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AZMAMI Oussama, SAJID Laila, BOUKHRISS Aicha, MAJID Sanaa, EL AHMADI Zakia, BENAYADA Abbès and GMOUH Said. GMOUH Said wrote the first draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Gmouh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azmami, O., Sajid, L., Boukhriss, A. et al. Sol-gel and polyurethane based flame retardant and water repellent coating for Palm/PES nonwovens composite. J Sol-Gel Sci Technol 97, 92–105 (2021). https://doi.org/10.1007/s10971-020-05429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05429-2

Keywords

Navigation