Skip to main content

Advertisement

Log in

Effect of TiO2 and Al2O3 on energy transfer and upconversion in Ho–Yb co-doped sol–gel silica glass

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Holmium (Ho3+) and Ytterbium (Yb3+) co-doped in sol–gel silica glasses are prepared and the effect of incorporating TiO2 and Al2O3 are also studied. Photoluminescence studies using 450 nm excitation show that both TiO2 and Al2O3 improves luminescence but through different mechanisms. The observations are in support of the increased energy transfer between Ho3+ and Yb3+ in the presence of TiO2. Upconversion is also observed with 980 nm excitation showing emission in the green and red regions. Upconversion intensity is also enhanced by TiO2 and Al2O3 but comparison of the intensity ratio of the green and red emissions shows significant back transfer in presence of TiO2.The power dependence study reveals the 5F5 → 5I8 transition of Ho3+ involves a two-step process.

Highlights

  • Both TiO2 and Al2O3 enhance the normal photoluminescence as well as upconversion.

  • Mechanism of luminescence enhancement of Al2O3 and TiO2 are found to be quite different.

  • Incorporation of Al2O3 reduces cross-relaxation between Ho3+ ions.

  • Incorporation of TiO2 increase energy transfer between Ho3+ and Yb3+ ions.

  • Back transfer form Ho3+ to Yb3+ limits the intensity of upconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Snitzer E (1961) Optical maser action of Nd+3 in a barium crown glass. Phys Rev Lett 7:444–446

    Article  CAS  Google Scholar 

  2. Caird JA, DeShazer LG (1975) Analysis of laser emission in Ho3+-doped materials. IEEE J Quantum Electron 11:97–99

    Article  Google Scholar 

  3. Tanabe S (2002) Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. Comptes Rendus Chim 5:815–824

    Article  CAS  Google Scholar 

  4. Righini GC, Enrichi F, Zur L, Ferrari M (2019) Rare-earth doped glasses and light manaing in solar cells. J Phys: Conf Ser 1221:012028

    CAS  Google Scholar 

  5. Mascetti J, Fouassier C, Hagenmuller P (1983) Concentration quenching of the Nd3+ emission in alkali rare earth borates. J Solid State Chem 50:204–212

    Article  CAS  Google Scholar 

  6. Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104:139–173

    Article  CAS  Google Scholar 

  7. Biswas A, Maciel GS, Friend CS, Prasad PN (2003) Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method. J Non-Cryst Solids 316:393–397

    Article  CAS  Google Scholar 

  8. Zhang QY, Li T, Jiang ZH, Ji XH, Buddhudu S (2005) 980nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses. Appl Phys Lett 87:171911

    Article  Google Scholar 

  9. Arai Y, Yamashidta T, Suzuki T, Ohishi Y (2009) Upconversion properties of Tb3+-Yb3+ codoped fluorophosphates glasses. J Appl Phys 105:083105

    Article  Google Scholar 

  10. Xu W, Gao X, Zheng L, Zhang Z, Cao W (2012) Short wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behaviour. Opt Express 20:18127–18137

    Article  CAS  Google Scholar 

  11. Carnall WT (1963) The near-infrared transitions of the trivalent lanthanides in solution II. Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+. J Phys Chern 67:1206–1211

    Article  CAS  Google Scholar 

  12. Jørgensen CK, Judd BR (1964) Hypersensitive pseudoquadrupole transitions in lanthanides. Mol Phys 8:281–290

    Article  Google Scholar 

  13. Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761

    Article  CAS  Google Scholar 

  14. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520

    Article  CAS  Google Scholar 

  15. Carnall WT, Crosswhite H, Crosswhite HM (1978) Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3, Argonne National Laboratory Report no. ANL-78-XX-95

  16. Peacock RD (1975) In: Dunitz JD, Hemmerich ZP, Holm RH, Ibers JB, Reinen D, Williams RJP (eds.) Rare earths: structure and bonding Vol. 22, Springer-Verlag, Berlin

  17. Yang YM, Yao BQ, Chen BJ, Wang C, Ren GZ, Wang XJ (2007) Judd-Ofelt analysis of spectroscopic properties of Tm3+, Ho3+ doped GdVO4 crystals. Opt Mater 29:1159–1165

    Article  CAS  Google Scholar 

  18. Henrie DE, Fellows RL, Choppin GR (1976) Hypersensitivity in the electronic transitions of lanthanide and actinide complexes. Coord Chem Rev 18:199–224

    Article  CAS  Google Scholar 

  19. Hehlen MP, Brik MG, Kramer KW (2013) 50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application. J Lumin 136:221–239

    Article  CAS  Google Scholar 

  20. Binnemans K, De Leebeeck H, Gorller-Walrand C, Adam JL (1999) Visualisation of the reliability of Judd-Ofelt intensity parameters by graphical simulation of the absorption spectrum. Chem Phys Lett 303:76–80

    Article  CAS  Google Scholar 

  21. Patra A, Reisfeld R, Minti H (1998) Influence of aluminium oxide on intensities of Sm3+ and Pr3+ spectral transitions in sol-gel glasses. Mater Lett 37:325–329

    Article  CAS  Google Scholar 

  22. Qiao Y, Da N, Chen D, Zhou Q, Qiu J, Akai T (2007) Spectroscopic properties of neodymium doped high silica glass and aluminium codoping effects on the enhancement of fluorine emission. Appl Phys B 87:717–722

    Article  CAS  Google Scholar 

  23. Rai S, Fanai AL (2016) Optical properties of Ho3+ in sol-gel silica glass co-doped with aluminium. J Non-Cryst Solids 449:113–118

    Article  CAS  Google Scholar 

  24. Arai K, Namikawa H, Kumata K, Honda T, Ishii Y, Handa T (1986) Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J Appl Phys 59:3430–3436

    Article  CAS  Google Scholar 

  25. Zhou Y, Lam YL, Wang SS, Liu HL, Kam CH, Chan YC (1997) Fluorescence enhancement of Er3+ doped sol-gel glass by aluminium codoping. Appl Phys Lett 71:587–589

    Article  CAS  Google Scholar 

  26. Monteil A, Chaussedent S, Alombert-Goget G, Gaumer N, Obriot J, Ribeiro SJL, Messaddeq Y, Chiasera A, Ferrari M (2004) Clustering of rare earth glasses, aluminum effect: experiments and modeling. J Non-Cryst Solids 348:44–50

    Article  CAS  Google Scholar 

  27. Dihingia PJ, Rai S (2012) Synthesis of TiO2 nanoparticles and spectroscopic upconversion luminescence of Nd3+ doped TiO2-SiO2 composite glass. J Lumin 132:1243–1251

    Article  CAS  Google Scholar 

  28. Lockhead MJ, Bray KL (1995) Rare-earth clustering and aluminium codoping in sol-gel silica: Investigation using Europium (III) fluorescence spectroscopy. Chem Mater 7:572–577

    Article  Google Scholar 

  29. Nogami M, Abe Y (1996) Properties of sol-gel derived Al2O3–SiO2 glasses using Eu3+ ion fluorescence spectra. J Non-Cryst Solids 197:73–78

    Article  CAS  Google Scholar 

  30. Miyakawa T, Dexter DL (1970) Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys Rev B 1:2961–2969

    Article  Google Scholar 

  31. Lowther JE (1976) Mechanisms of energy transfer between rare earth ions. Phys Stat Sol (b) 77:359–366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Science and Technology New Delhi (India) for financial support (No. SR/S2/LOP-0039/2010). ALF would also like to thank University Grants Commission, New Delhi (India) for financial support through research fellowship (F1-17.1/2015-16/NFST-2015-17-ST-MIZ-3869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanai, A.L., Rai, S. Effect of TiO2 and Al2O3 on energy transfer and upconversion in Ho–Yb co-doped sol–gel silica glass. J Sol-Gel Sci Technol 97, 452–457 (2021). https://doi.org/10.1007/s10971-020-05424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05424-7

Keywords

Navigation