Skip to main content
Log in

Synthesis of phenylalanine and leucine dipeptide functionalized silica-based nanoporous material as a safe UV filter for sunscreen

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

To allay concerns that sunscreen ingredients are harmful to skin health, we have developed phenylalanine (Phe) and leucine (Leu) dipeptide functionalized silica-based nanoporous material (Phe-Leu-OMe-Meso) as a safe ultraviolet filter for skin protection from UVA/UVB sun irradiation. The selected peptide-based functional molecules are composed of natural amino acids, which have obvious advantages compared with other biological molecules and organic molecules, such as low toxicity and high stability. Octyl salicylate (OS) is adopted as the drug molecule to observe the adsorption behavior of the nanoporous materials. The results confirm that Phe groups effectively improve the OS loaded capacity of Phe-Leu-OMe-Meso by aromatic ππ stacking interaction, and the experimental data obey the pseudo-second-order kinetic model and the Langmuir, Freundlich, Temkin isotherm model. Moreover, in vitro evaluation of the spectrophotometric sun protection factor indicates that Leu groups make Phe-Leu-OMe-Meso possess an excellent sunscreen efficacy close to that of mesoporous TiO2 and exhibit a synergistic effect with OS on sun protection. In summary, the dipeptide functionalization of silica-based nanoporous material has an excellent prospect in the application of sunscreen.

Highlights

  • Phenylalanyl-leucine organic silicon precursor (Phe-Leu-OMe-Si) was prepared by choosing leucine of the aliphatic family and phenylalanine of the aromatic family as initial reactants.

  • Dipeptide functionalization of silica-based nanoporous material was used for sun protection for the first time, which has a positive significance.

  • The dipeptide-based functional molecules provide two functions: Leu groups make Phe-Leu-OMe-Meso possess excellent sunscreen efficacy close to that of mesoporous TiO2 and exhibit a synergistic effect with octyl salicylate on sun protection; Phe groups effectively improved octyl salicylate (OS) loaded capacity of Phe-Leu-OMe-Meso by aromatic ππ stacking interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sklar LR, Almutawa F, Lim HW, Hamzavi I (2013) Photochem Photobiol Sci 12(1):54–64

    Article  CAS  Google Scholar 

  2. Williamson CE, Zepp RG, Lucas RM, Madronich S, Austin AT, Ballaré CL, Norval M, Sulzberger B, Bais AF, McKenzie RL, Robinson SA, Häder D-P, Paul ND, Bornman JF (2014) Nat Clim Change 4(6):434–441

    Article  Google Scholar 

  3. Rastogi SC (2002) Contact Dermat 46(6):348–451

    Article  CAS  Google Scholar 

  4. Serpone N, Dondi D, Albini A (2007) Inorg Chim Acta 360(3):794–802

    Article  CAS  Google Scholar 

  5. Shaath NA (2010) Photochem Photobiol Sci 9(4):464–469

    Article  CAS  Google Scholar 

  6. Newman MD, Stotland M, Ellis JI (2009) J Am Acad Dermatol 61(4):685–692

    Article  CAS  Google Scholar 

  7. Schneider SL, Lim HW (2019) Photodermatol Photoimmunol Photomed 35(6):442–446

    Article  CAS  Google Scholar 

  8. Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, Schulte S, Wohlleben W, Oesch F (2010) Nanotoxicology 4(4):364–381

    Article  CAS  Google Scholar 

  9. Rancan F, Nazemi B, Rautenberg S, Ryll M, Hadam S, Gao Q, Hackbarth S, Haag SF, Graf C, Ruhl E, Blume-Peytavi U, Lademann J, Vogt A, Meinke MC (2014) Ski Res Technol 20(2):182–193

    Article  CAS  Google Scholar 

  10. Schlumpf M, Cotton B, Conscience M (2001) Environ Health Perspect 109(3):239–224

    Article  CAS  Google Scholar 

  11. Van der Voort P, Esquivel D, De Canck E, Goethals F, Van Driessche I, Romero-Salguero FJ (2013) Chem Soc Rev 42(9):3913–3955

    Article  Google Scholar 

  12. Croissant JG, Fatieiev Y, Almalik A, Khashab NM (2018) Adv Healthc Mater 7(4):1700831

  13. Lin Z, Xu L, Zhang J, Li Z, Zhao J (2019) Nano 14(11):1950141

  14. Wang S, Song FX, Zhang L, Zhang X, Li Y (2019) Nano 14(08):1950094

  15. Li X, Gao F, Dong Y, Li X (2019) Nano 14(12):1930008

  16. Daneluti ALM, Neto FM, Ruscinc N, Lopes I, Robles Velasco MV, Do Rosario Matos J, Baby AR, Kalia YN (2019) Int J Pharm 570:118633

    Article  CAS  Google Scholar 

  17. Zaccariello G, Back M, Benedetti A, Canton P, Cattaruzza E, Onoda H, Glisenti A, Alimonti A, Bocca B, Riello P (2019) J Colloid Interface Sci 549:1–8

    Article  CAS  Google Scholar 

  18. Daneluti ALM, Neto FM, Velasco MVR, Baby AR, do Rosário Matos J (2017) J Therm Anal 131(1):789–798

    Article  Google Scholar 

  19. Yoo J, Kim H, Chang H, Park W, Hahn SK, Kwon W (2020) ACS Appl Mater Interfaces 12(8):9062–9069

    Article  CAS  Google Scholar 

  20. Gartmann N, Bruhwiler D (2011) Chimia 65(4):250–252

    Article  CAS  Google Scholar 

  21. Hu JJ, Xiao D, Zhang XZ (2016) Small 12(25):3344–3359

    Article  CAS  Google Scholar 

  22. Rahnamaeian M, Vilcinskas A (2015) Appl Microbiol Biotechnol 99(21):8847–8855

    Article  CAS  Google Scholar 

  23. Pauly G, Contet-Audonneau JL, Moussou P, Danoux L, Rathjens A (2009) Int J Cosmet Sci 31(2):154–154

    Article  Google Scholar 

  24. Park JI, Lee JE, Shin HJ, Song S, Lee WK, Hwang JS (2017) Biomol Ther 25(5):528–534

    Article  CAS  Google Scholar 

  25. Antoniou C, Kosmadaki MG, Stratigos AJ, Katsambas AD (2008) J Eur Acad Dermatol Venereol 22(9):1110–1119

    Article  CAS  Google Scholar 

  26. Tien C, Ramarao BV (2014) Sep Purif Technol 136:303–308

    Article  CAS  Google Scholar 

  27. de A, Odagd C, K-Her M (2004) Braz J Pharm Sci 40(3):381–385

    Google Scholar 

  28. Liang W-J, Hsieh S-J, Hsu C-Y, Chen W-F, Kuo P-L (2006) J Polym Sci B Polym Phys 44(15):2135–2144

    Article  CAS  Google Scholar 

  29. Gao ZP, Yu ZF, Yue TL, Quek SY (2013) J Food Eng 116(1):195–201

    Article  CAS  Google Scholar 

  30. Azizian S (2004) J Colloid Interface Sci 276(1):47–52

    Article  CAS  Google Scholar 

  31. Ghaedi M, Ansari A, Habibi MH, Asghari AR (2014) J Ind Eng Chem 20(1):17–28

    Article  CAS  Google Scholar 

  32. Tseng R-L, Wu F-C, Juang R-S (2010) J Taiwan Inst Chem Eng 41(6):661–669

    Article  CAS  Google Scholar 

  33. Wang G, Wang X, Chai X, Liu J, Deng N (2010) Appl Clay Sci 47(3–4):448–451

    Article  CAS  Google Scholar 

  34. Zou Y, Wang X, Ai Y, Liu Y, Ji Y, Wang H, Hayat T, Alsaedi A, Hu W, Wang X (2016) J Mater Chem A 4(37):14170–14179

    Article  CAS  Google Scholar 

  35. Liu Y, Liu Y-J (2008) Sep Purif Technol 61(3):229–242

    Article  CAS  Google Scholar 

  36. Foo KY, Hameed BH (2010) Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  37. Eriksson M, Lundström I, Ekedahl LG (1997) J Appl Phys 82(6):3143–3146

    Article  CAS  Google Scholar 

  38. Parisi OI, Aiello D, Casula MF, Puoci F, Malivindi R, Scrivano L, Testa F (2016) RSC Adv 6(87):83767–83775

    Article  CAS  Google Scholar 

  39. Fadeel B, Garcia-Bennett AE (2010) Adv Drug Deliv Rev 62(3):362–374

    Article  CAS  Google Scholar 

  40. Mohammadi P, Abbasinia M, Assari MJ, Oliaei M (2018) Toxicological Environ Chem 100(3):285–316

    Article  CAS  Google Scholar 

  41. Jaganathan H, Godin B (2012) Adv Drug Deliv Rev 64(15):1800–1819

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nanjing Tech University for its support throughout the course of this research. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haohua Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Wang, J., Zhang, W. et al. Synthesis of phenylalanine and leucine dipeptide functionalized silica-based nanoporous material as a safe UV filter for sunscreen. J Sol-Gel Sci Technol 97, 466–478 (2021). https://doi.org/10.1007/s10971-020-05417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05417-6

Keywords

Navigation