Skip to main content
Log in

Nanosheets self-supported structure in the orderly porous spheres of Co/Mn ions co-substituted α-Ni(OH)2 for high-performance supercapacitors

  • Original Paper: Sol–gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ni(OH)2 as a battery-type electrode material in Faraday supercapacitors could present low electrochemical performance, which is mainly attributed to its low electrical conductivity and inappropriate pore structure. In this work, we try to address these two issues by co-substituting Co/Mn ions in Ni(OH)2 via a co-precipitation strategy, forming spheres assembled with orderly interlaced nanosheets. The nanosheets self-supporting nanostructure plus the structure stabilization of substituted Co ions result in the high cycling stability of as-prepared Ni(OH)2 spheres (84.2% capacity retention after 10,000 charge–discharge cycles). Meanwhile, the spheres present high electrochemical performance due to the ordered nanostructure and the synergetic contribution of Co/Mn ions. The asymmetrical supercapacitor assembled with the ions-substituted Ni(OH)2 spheres also show high performance. It delivers a high energy density of 55.8 Wh kg−1 at power density of 565.6 W kg−1 and super-high cycling stability (80.2% of capacity retention after 30,000 cycles at 2.0 A g−1). These results demonstrate that the ions-substituted Ni(OH)2 spheres could be a promising electrode material for application in supercapacitors.

Highlights

  • The Co/Mn ions co-substituted α‑Ni(OH)2 with nanosheets self-supported structure is synthesized.

  • The Co/Mn ions co-substituted α‑Ni(OH)2 shows high electrochemical activity and excellent cycling stability.

  • The ordered structure and Co/Mn ions are beneficial to the mechanical strength of a-Ni(OH)2.

  • The synergistic effects of Co/Mn ions contribute to the high electrochemical performance of a-Ni(OH)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu C, Yan X, Hu F, Gao G, Wu G, Yang X (2018) Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv Mater 30:1705713

    Google Scholar 

  2. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280

    CAS  Google Scholar 

  3. Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823

    CAS  Google Scholar 

  4. Chen G, Liaw SS, Li B, Xu Y, Dunwell M, Deng S, Fan H, Luo H (2014) Microwave-assisted synthesis of hybrid CoxNi1-x(OH)2 nanosheets: tuning the composition for high performance supercapacitor. J Power Sources 251:338–343

    CAS  Google Scholar 

  5. Xu J, Liu Y, Wang M, Li J, Cui H (2019) High shear-granulated hierarchically porous spheres nanostructure-designed for high-performance supercapacitors. Adv Powder Technol 30:2440–2449

    CAS  Google Scholar 

  6. Chen D, Xiong X, Zhao B, Mahmoud MA, El-Sayed MA, Liu M (2016) Probing structural evolution and charge storage mechanism of NiO2Hx electrode materials using in operando resonance raman spectroscopy. Adv Sci 3:1500433

    Google Scholar 

  7. Wang X, Sumboja A, Lin M, Yan J, Lee PS (2012) Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272

    CAS  Google Scholar 

  8. Hall DS, Lockwood DJ, Bock C, MacDougall BR (2015) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc R Soc A 471:20140792

    Google Scholar 

  9. Liu L, Hou Y, Gao Y, Yang N, Liu J, Wang X (2019) Co doped α-Ni(OH)2 multiple-dimensional structure electrode material. Electrochim Acta 295:340–346

    CAS  Google Scholar 

  10. Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y (2014) Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci Rep 4:5787

    CAS  Google Scholar 

  11. Zhao B, Zhang L, Zhang Q, Chen D, Cheng Y, Deng X, Chen Y, Murphy R, Xiong X, Song B, Wong C, Wang M, Liu M (2018) Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv Energy Mater 8:1702247

    Google Scholar 

  12. Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, Duoss EB, Spadaccini C, Worsley MC, Li Y (2019) Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3:459–470

    CAS  Google Scholar 

  13. Cheng Y, Zhang H, Varanasi CV, Liu J (2013) Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ Sci 6:3314–3321

    CAS  Google Scholar 

  14. Lee JH, Lim SY, Chae KH, Park SH, Chung KY, Deniz E, Choi JW (2017) Stabilized octahedral frameworks in layered double hydroxides by solid-solution mixing of transition metals. Adv Funct Mater 27:1605225

    Google Scholar 

  15. Zhou S, Wei W, Zhang Y, Cui S, Chen W, Mi L (2019) Heterojunction α-Co(OH)2/α-Ni(OH)2 nanorods arrays on Ni foam with high utilization rate and excellent structure stability for high-performance supercapacitor. Sci Rep 9:1–12

    Google Scholar 

  16. Chen Y, Pang WK, Bai H, Zhou T, Liu Y, Li S, Guo Z (2017) Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett 17:429–436

    CAS  Google Scholar 

  17. Qin Q, Ou D, Ye C, Chen L, Lan B, Yan J, Wu Y (2019) Systematic study on hybrid supercapacitor of Ni-Co layered double hydroxide//activated carbons. Electrochim Acta 305:403–415

    CAS  Google Scholar 

  18. Li J, Yang M, Wei J, Zhou Z (2012) Preparation and electrochemical performances of doughnut-like Ni(OH)2-Co(OH)2 composites as pseudocapacitor materials. Nanoscale 4:4498–4503

    CAS  Google Scholar 

  19. Zhu Y, Huang C, Li C, Fan M, Shu K, Chen H (2019) Strong synergetic electrochemistry between transition metals of α phase Ni-Co-Mn hydroxide contributed superior performance for hybrid supercapacitors. J Power Sources 412:559–567

    CAS  Google Scholar 

  20. Chen H, Qin Y, Cao H, Song X, Huang C, Feng H, Zhao X (2019) Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater 17:194–203

    Google Scholar 

  21. Ye L, Zhou Y, Bao Z, Zhao Y, Zou Y, Zhao L, Jiang Q (2018) Sheet-membrane Mn-doped nickel hydroxide encapsulated via heterogeneous Ni3S2 nanoparticles for efficient alkaline battery-supercapacitor hybrid devices. J Mater Chem A 6:19020–19029

    CAS  Google Scholar 

  22. Xia G, Wang S (2019) Microwave-assisted facile and rapid synthesis of layered metal hydroxide nanosheet arrays towards high-performance aqueous hybrid supercapacitors. Ceram Int 45:20810–20817

    CAS  Google Scholar 

  23. Zhao J, Chen J, Xu S, Shao M, Zhang Q, Wei F, Ma J, Wei M, Evans DG, Duan X (2014) Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater 24:2938–2946

    CAS  Google Scholar 

  24. Yang H, Zhao D, Lin H, Tian X, Han X, Duan Y, Zhao M (2018) Activated graphene nanosheets/spinule-like Ni(OH)2 composite as cathode materials for high performance supercapacitors. Electrochim Acta 292:468–476

    CAS  Google Scholar 

  25. Tang Y, Liu Y, Yu S, Zhao Y, Mu S, Gao F (2014) Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochim Acta 123:158–166

    CAS  Google Scholar 

  26. Liu F, Chu X, Zhang H, Zhang B, Su H, Jin L, Wang Z, Huang H, Yang W (2018) Synthesis of self-assembly 3D porous Ni(OH)2 with high capacitance for hybrid supercapacitors. Electrochim Acta 269:102–110

    CAS  Google Scholar 

  27. Wang D, Guan B, Li Y, Li D, Xu Z, Hu Y, Wang Y, Zhang H (2018) Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors. J Alloy Comp 737:238–247

    CAS  Google Scholar 

  28. Yang S, Wu C, Cai J, Zhu Y, Zhang H, Lu Y, Zhang K (2017) Seed-assisted smart construction of high mass loading Ni-Co-Mn hydroxide nanoflakes for supercapacitor applications. J Mater Chem A 5:16776–16785

    CAS  Google Scholar 

  29. Zheng X, Gu Z, Hu Q, Geng B, Zhang X (2015) Ultrathin porous nickel-cobalt hydroxide nanosheets for high-performance supercapacitor electrodes. RSC Adv 5:17007–17013

    CAS  Google Scholar 

  30. Tian J, Xing Z, Chu Q, Liu Q, Asiri AM, Qusti AH, Al-Youbi AO, Sun X (2013) PH-driven dissolution-precipitation: a novel route toward ultrathin Ni(OH)2 nanosheets array on nickel foam as binder-free anode for Li-ion batteries with ultrahigh capacity. CrystEngComm 15:8300–8305

    CAS  Google Scholar 

  31. Li Q, Yao H, Liu F, Gao Z, Yang Y (2019) Mn-doped Ni-coordination supramolecular networks for binder-free high-performance supercapacitor electrode material. Electrochim Acta 321:134682

    CAS  Google Scholar 

  32. Bommel AV, Dahn JR (2009) Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chem Mater 21:1500–1503

    Google Scholar 

  33. Sivakumar P, Jana M, Jung MG, Gedanken A, Park HS (2019) Hexagonal plate-like Ni-Co-Mn hydroxide nanostructure for high energy density of hybrid supercapacitors. J Mater Chem A 7:11362–11369

    CAS  Google Scholar 

  34. Chen H, Ai Y, Liu F, Chang X, Xue Y, Huang Q, Wang C, Lin H, Han S (2016) Carbon-coated hierarchical Ni-Mn layered double hydroxide nanoarrays on Ni foam for flexible high-capacitance supercapacitors. Electrochim Acta 213:55–65

    CAS  Google Scholar 

  35. Tessier C, Guerloudemourgues L, Faure C, Basterreix M, Nabias G, Delmas C (2000) Structural and textural evolution of zinc-substituted nickel hydroxide electrode materials upon ageing in KOH and upon redox cycling. Solid State Ion 133:11–23

    CAS  Google Scholar 

  36. Soler-Illia G, Jobbágy M, Regazzoni AE, Blesa MA (1999) Synthesis of nickel hydroxide by homogeneous alkalinization precipitation mechanism. Chem Mater 11:3140–3146

    Google Scholar 

  37. Liu Z, Renzhi M, Minoru O, Kazunori T, Takayoshi S (2005) Selective and controlled synthesis of alpha- and beta-cobalt hydroxides in highly developed hexagonal platelets. J Am Chem Soc 127:13869–13874

    CAS  Google Scholar 

  38. Hall DS, Lockwood DJ, Poirier S, Bock C, MacDougall BR (2012) Raman and infrared spectroscopy of alpha and beta phases of thin nickel hydroxide films electrochemically formed on nickel. J Mater Chem A 116:6771–6784

    CAS  Google Scholar 

  39. Roquemalherbe R (2007) Adsorption and Diffusion in Nanoporous Materials. CRC Press, Boca Raton

  40. Chen J, Bradhurst DH, Dou SX, Liu H (1999) Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries. J Electrochem Soc 146:3606–3612

    CAS  Google Scholar 

  41. Sun W, Rui X, Ulaganathan M, Madhavi S, Yan Q (2015) Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. J Power Sources 295:323–328

    CAS  Google Scholar 

  42. Nath AR, Jayachandran A, Sandhyarani N (2019) Nanosheets of nickel, cobalt and manganese triple hydroxides/oxyhydroxides as efficient electrode materials for asymmetrical supercapacitors. Dalton Trans 48:4211–4217

    Google Scholar 

  43. Yu M, Liu R, Liu J, Li S, Ma Y (2017) Polyhedral-like NiMn-layered double hydroxide/porous carbon as electrode for enhanced electrochemical performance supercapacitors. Small 13:1702616

    Google Scholar 

  44. Liu S, Lee SC, Patil U, Shackery I, Kang S, Zhang K, Park JH, Chung KY, Jun SC (2017) Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core-shell heterostructures as advanced electrodes for supercapacitors. J Mater Chem A 5:1043–1049

    CAS  Google Scholar 

  45. Liang D, Wu S, Liu J, Tian Z, Liang C (2016) Co-doped Ni hydroxide and oxide nanosheet networks: laser-assisted synthesis, effective doping, and ultrahigh pseudocapacitor performance. J Mater Chem A 4:10609–10617

    CAS  Google Scholar 

  46. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

    CAS  Google Scholar 

  47. Su Y, Xiao K, Li N, Liu Z, Qiao S (2014) Amorphous Ni(OH)2 @ three-dimensional Ni core-shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J Mater Chem A 2:13845–13853

    CAS  Google Scholar 

  48. Ede SR, Anantharaj S, Kumaran KT, Mishra S, Kundu S (2017) One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv 7:5898–5911

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Major scientific and technological innovation project of Shandong Province (No. 2019JZZY010908), Natural Science Foundation of Shandong Province (No. ZR2019MEM036), Key Research and Development Program of Shandong Province (No. 2019GGX103006), Yantai Science and Technology Project (No. 2019XDHZ088), and the Opening Foundation of Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan (No. KF201901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Liu or Hongtao Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Wang, M., Li, J. et al. Nanosheets self-supported structure in the orderly porous spheres of Co/Mn ions co-substituted α-Ni(OH)2 for high-performance supercapacitors. J Sol-Gel Sci Technol 97, 422–430 (2021). https://doi.org/10.1007/s10971-020-05415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05415-8

Keywords

Navigation