Skip to main content
Log in

Effect of TiO2 nanoparticle loading by sol–gel method on the gas-phase photocatalytic activity of CuxO–TiO2 nanocomposite

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, multicomponent CuxO–TiO2 (x = 1 or 2) nanocomposite was used as a photocatalyst to eliminate 2-propanol in gas-phase media under both UV and sunlight-type irradiation. The specimens were fabricated by a two-step synthesis including solution treatment–thermal oxidation for CuxO and consequently sol–gel method for applying TiO2 nanoparticles. The present study focused on analyzing the role of TiO2 content on the photocatalytic behavior of the CuxO–TiO2 nanocomposites with varying Ti/Cu atomic ratio. The results showed that the nanocomposite formed successfully in desirable structure and morphology. Moreover, the nanocomposite material having Ti/Cu = 0.6 displayed improved activity concerning both reaction rate and quantum efficiency. Furthermore, it is proved that these nanocomposite materials are stable for photoactivity application. Finally, the kinetic study was carried out with modeling 2-propanol degradation based on the reaction mechanism. The experimental and predicted data obtained under different operational working conditions were in good agreement.

Multicomponent CuxO–TiO2 nano-photocatalyst was synthesized to eliminate 2-propanol in gas-phase media under both UV and sunlight-type irradiation. The material having Ti/Cu = 0.6 displayed improved activity concerning both reaction rate and quantum efficiency.

Highlights

  • CuxO–TiO2 (x = 1 or 2) nanocomposite were fabricated by a two-step synthesis method.

  • Catalysts formed in desirable structure and morphology with different TiO2 content.

  • TiO2 content in the nanocomposite system plays a significant role in photoactivity.

  • Kinetic study proved the good fitness between experimental and predicted data.

  • CuxO–TiO2 composite photocatalysts are stable for photoactivity application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Palmisano G, García-López E, Marci G, Loddo V, Yurdakal S, Augugliaro V, Palmisano L (2010) Advances in selective conversions by heterogeneous photocatalysis. Chem Commun. https://doi.org/10.1039/C0CC02087G

  2. Ajmal A, Majeed I, Malik RN, Iqbal M, Nadeem MA, Hussain I, Yousaf S, Mustafa G, Zafar MI, Nadeem MA (2016) Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2016.03.041

  3. Muñoz-Batista MJ, Ballari MM, Kubacka A, Alfano OM, Fernández-García M (2019) Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach. Chem Soc Rev. https://doi.org/10.1039/C8CS00108A

  4. Wang Y, Gao J, Wang X, Jin L, Fang L, Zhang M, He G, Sun Z (2018) Facile synthesis of core-shell ZnO/Cu2O heterojunction with enhanced visible light-driven photocatalytic performance. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-018-4786-8

  5. Hernández-Ramírez A, Medina-Ramírez I (2016) Photocatalytic semiconductors. Springer International Publishing, Switzerland

  6. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Application of doped photocatalysts for organic pollutant degradation—a review. J Environ Manag. https://doi.org/10.1016/j.jenvman.2017.04.099

  7. Rodríguez-Padrón D, Luque R, Muñoz-Batista MJ (2020) Waste-derived materials: opportunities in photocatalysis. Top Curr Chem. https://doi.org/10.1007/s41061-019-0264-1

  8. Deng X, Wang C, Shao M, Xu X, Huang J (2017) Low-temperature solution synthesis of CuO/Cu2O nanostructures for enhanced photocatalytic activity with added H2O2: synergistic effect and mechanism insight. RSC Adv. https://doi.org/10.1039/C6RA27634B

  9. Scuderi V, Amiard G, Boninelli S, Scalese S, Miritello M, Sberna PM, Impellizzeri G, Privitera V (2016) Photocatalytic activity of CuO and Cu2O nanowires. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2015.08.008

  10. Valles-Pérez BY, Badillo-Ávila MA, Torres-Delgado G, Castanedo-Pérez R, Zelaya-Ángel O (2020) Photocatalytic activity of ZnO + CuO thin films deposited by dip coating: coupling effect between oxides. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-020-05223-0

  11. Kubacka A, Muñoz-Batista MJ, Fernández-García M, Obregón S, Colón G (2015) Evolution of H2 photoproduction with Cu content on CuOx-TiO2 composite catalysts prepared by a microemulsion method. Appl Catal B. https://doi.org/10.1016/j.apcatb.2014.08.005

  12. Zhao J, Nguyen DCT, Areerob Y, Oh WC (2019) Novel synthesis of nano needle-like Cu2O-GO-TiO2 and CuO-GO-TiO2 for the high photocatalytic performance of anionic and cationic pollutants. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2019.03.019

  13. Kumar S, Parlett CM, Isaacs MA, Jowett DV, Douthwaite RE, Cockett MC, Lee AF (2016) Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Appl Catal B. https://doi.org/10.1016/j.apcatb.2016.02.038

  14. Chen J, Liu X, Zhang H, Liu P, Li G, An T, Zhao H (2016) Soft-template assisted synthesis of mesoporous CuO/Cu2O composite hollow microspheres as efficient visible-light photocatalyst. Mater Lett. https://doi.org/10.1016/j.matlet.2016.06.077

  15. Sun M, Fang Y, Wang Y, Sun S, He J, Yan Z (2015) Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2015.08.002

  16. Xiong D, Chang H, Zhang Q, Tian S, Liu B, Zhao X (2015) Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2015.04.188

  17. Liu XW, Li WW, Yu HQ (2014) Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev. https://doi.org/10.1039/C3CS60130G

  18. Min Z, Wang X, Li Y, Jiang J, Li J, Qian D, Li J (2017) A highly efficient visible-light-responding Cu2O−TiO2/g-C3N4 photocatalyst for instantaneous discolorations of organic dyes. Mater Lett. https://doi.org/10.1016/j.matlet.2017.01.083

  19. Park SM, Razzaq A, Park YH, Sorcar S, Park Y, Grimes CA, In SI (2016) Hybrid CuxO–TiO2 heterostructured composites for photocatalytic CO2 reduction into methane using solar irradiation: sunlight into fuel. ACS Omega. https://doi.org/10.1021/acsomega.6b00164

  20. Peh CKN, Wang XQ, Ho GW (2017) Increased photocatalytic activity of CuO/TiO2 through broadband solar absorption heating under natural sunlight. Procedia Eng. https://doi.org/10.1016/j.proeng.2017.11.006

  21. Kim HR, Razzaq A, Grimes CA, In SI (2017) Heterojunction p-n-p Cu2O/S-TiO2/CuO: synthesis and application to photocatalytic conversion of CO2 to methane. J CO2 Util. https://doi.org/10.1016/j.jcou.2017.05.008

  22. Luna AL, Valenzuela MA, Colbeau-Justin C, Vázquez P, Rodriguez JL, Avendaño JR, Alfaro S, Tirado S, Garduño A, José M (2016) Photocatalytic degradation of gallic acid over CuO–TiO2 composites under UV/Vis LEDs irradiation. Appl Catal A. https://doi.org/10.1016/j.apcata.2015.10.044

  23. Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q (2010) High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 pn heterojunction network catalyst. J Environ Sci Technol. https://doi.org/10.1021/es101711k

  24. Geng Z, Zhang Y, Yuan X, Huo M, Zhao Y, Lu Y, Qiu Y (2015) Incorporation of Cu2O nanocrystals into TiO2 photonic crystal for enhanced UV–visible light driven photocatalysis. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2015.05.075

  25. Tian X, Li S, Cao Y, Xu Y, Zhang G (2014) Preparation, optical property, and photocatalytic activity of cubic Cu2O/amorphous TiO2 and spheric CuO/TiO2 core–shell nanocomposites. Mater Lett. https://doi.org/10.1016/j.matlet.2014.05.127

  26. Muñoz-Batista MJ, Eslava-Castillo AM, Kubacka A, Fernández-García M (2018) Thermo-photo degradation of 2-propanol using a composite ceria-titania catalyst: physico-chemical interpretation from a kinetic model. Appl Catal B. https://doi.org/10.1016/j.apcatb.2017.11.073

  27. Muñoz-Batista MJ, Ballari MDLM, Cassano AE, Alfano OM, Kubacka A, Fernández-García M (2015) Ceria promotion of acetaldehyde photo-oxidation in a TiO2-based catalyst: a spectroscopic and kinetic study. Catal Sci Technol. https://doi.org/10.1039/C4CY01293C

  28. Anandan S, Vinu A, Lovely KS, Gokulakrishnan N, Srinivasu P, Mori T, Ariga K (2007) Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J Mol Catal A Chem. https://doi.org/10.1016/j.molcata.2006.11.008

  29. Zhang M, Sheng G, Fu J, An T, Wang X, Hu X (2005) Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method. Mater Lett. https://doi.org/10.1016/j.matlet.2005.06.037

  30. Obregón S, Munoz-Batista MJ, Fernández-García M, Kubacka A, Colón G (2015) Cu–TiO2 systems for the photocatalytic H2 production: influence of structural and surface support features. Appl Catal B. https://doi.org/10.1016/j.apcatb.2015.05.043

  31. John S, Roy SC (2019) CuO/Cu2O nanoflake/nanowire heterostructure photocathode with enhanced surface area for photoelectrochemical solar energy conversion. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144703

  32. Moniz SJ, Tang J (2015) Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised through a rapid, one‐pot, microwave solvothermal route. ChemCatChem. https://doi.org/10.1002/cctc.201500315

  33. Karunakaran C, Gomathisankar P (2013) Solvothermal synthesis of CeO2–TiO2 nanocomposite for visible light photocatalytic detoxification of cyanide. ACS Sustain Chem Eng. https://doi.org/10.1021/sc400195n

  34. Hinojosa-Reyes M, Camposeco-Solís R, Zanella R, González VR (2017) Hydrogen production by tailoring the brookite and Cu2O ratio of sol-gel Cu-TiO2 photocatalysts. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.06.066

  35. Yang L, Li X, Wang Z, Shen Y, Liu M (2017) Natural fiber templated TiO2 microtubes via a double soaking sol-gel route and their photocatalytic performance. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2017.05.168

  36. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne JA, O’shea K, Entezari MH (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B. https://doi.org/10.1016/j.apcatb.2012.05.036

  37. Munoz-Batista MJ, Caudillo-Flores U, Ung-Medina F, del Carmen Chávez-Parga M, Cortés JA, Kubacka A, Fernández-García M (2017) Gas phase 2-propanol degradation using titania photocatalysts: study of the quantum efficiency. Appl Catal B. https://doi.org/10.1016/j.apcatb.2016.08.014

  38. Ansari F, Sheibani S, Fernández-García M (2019) Characterization and performance of Cu2O nanostructures on Cu wire photocatalyst synthesized in-situ by chemical and thermal oxidation. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-019-01745-8

  39. Gálvez-López MF, Munoz-Batista MJ, Alvarado-Beltrán CG, Almaral-Sánchez JL, Bachiller-Baeza B, Kubacka A, Fernández-García M (2018) Sn modification of TiO2 anatase and rutile type phases: 2-Propanol photo-oxidation under UV and visible light. Appl Catal B. https://doi.org/10.1016/j.apcatb.2018.01.075

  40. Liu L, Yang W, Li Q, Gao S, Shang JK (2014) Synthesis of Cu2O nanospheres decorated with TiO2 nanoislands, their enhanced photoactivity and stability under visible light illumination, and their post-illumination catalytic memory. ACS Appl Mater Interfaces. https://doi.org/10.1021/am500131b

  41. Mamba G, Pulgarin C, Kiwi J, Bensimon M, Rtimi S (2017) Synchronic coupling of Cu2O(p)/CuO(n) semiconductors leading to norfloxacin degradation under visible light: Kinetics, mechanism and film surface properties. J Catal. https://doi.org/10.1016/j.jcat.2017.06.036

  42. Caudillo-Flores U, Muñoz-Batista MJ, Ung-Medina F, Alonso-Núñez G, Kubacka A, Cortés JA, Fernández-García M (2016) Effect of the anatase–rutile contact in gas phase toluene photodegradation quantum efficiency. Chem Eng J. https://doi.org/10.1016/j.cej.2016.04.090

  43. Muñoz-Batista MJ, Kubacka A, Hungría AB, Fernández-García M (2015) Heterogeneous photocatalysis: light-matter interaction and chemical effects in quantum efficiency calculations. J Catal. https://doi.org/10.1016/j.jcat.2015.06.021

  44. Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M, Sreedhar B, Hebalkar NY (2010) Highly stabilized and finely dispersed Cu2O/TiO2: A promising visible sensitive photocatalyst for continuous production of hydrogen from Glycerol: Water mixtures. J Phys Chem C. https://doi.org/10.1021/jp107405u

  45. Hasegawa M (2014) Ellingham diagram, in treatise on process metallurgy. Elsevier, Netherlands

    Google Scholar 

  46. Gaskell DR, Laughlin DE (2017) Introduction to the thermodynamics of materials. CRC Press, Florida

    Google Scholar 

  47. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (technical report). Pure Appl Chem. https://doi.org/10.1351/pac199466081739

  48. Xu L, Xu HY, Wang F, Zhang FJ, Meng ZD, Zhao W, Oh WC (2012) Microwave-assisted synthesis of flower-like and plate-like CuO nanopowder and their photocatalytic activity for polluted lake water. J Korean Ceram Soc. https://doi.org/10.4191/kcers.2012.49.2.151

  49. Taufik A, Muzaki A, Saleh R (2017) The addition of graphene and magnetite materials in TiO2/CuO catalyst for enhancing photosonocatalytic performance and reusability. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/202/1/012078

  50. Colon G, Maicu M, Hidalgo MS, Navio JA (2006) Cu-doped TiO2 systems with improved photocatalytic activity. Appl Catal B. https://doi.org/10.1016/j.apcatb.2006.03.019

  51. Wood BJ, Strens RGJ (1979) Diffuse reflectance spectra and optical properties of some sulphides and related minerals. Mineral Mag. https://doi.org/10.1180/minmag.1979.043.328.11

  52. Hecht HG (1976) The interpretation of diffuse reflectance spectra, in standardization in spectrophotometry and luminescence measurements. National Bureau of Standards, Washington

  53. Hu Z, Wang X, Dong H, Li S, Li X, Li L (2017) Efficient photocatalytic degradation of tetrabromodiphenyl ethers and simultaneous hydrogen production by TiO2-Cu2O composite films in N2 atmosphere: influencing factors, kinetics and mechanism. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2017.07.009

  54. Li H, Su Z, Hu S, Yan Y (2017) Free-standing and flexible Cu/Cu2O/CuO heterojunction net: a novel material as cost-effective and easily recycled visible-light photocatalyst. Appl Catal B. https://doi.org/10.1016/j.apcatb.2017.02.013

  55. Mosleh S, Rahimi MR, Ghaedi M, Dashtian K, Hajati S (2018) Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2017.08.007

  56. Zhu S, Wang D (2017) Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mater. https://doi.org/10.1002/aenm.201700841

  57. Araña J, Alonso AP, Rodriguez JD, Colón G, Navío JA, Peña JP (2009) FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Appl Catal B. https://doi.org/10.1016/j.apcatb.2008.11.027

  58. Muñoz-Batista MJ, Kubacka A, Fernández-García M (2014) Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catal Sci Technol. https://doi.org/10.1039/C4CY00226A

  59. Liu K, Zhang Z, Lu N, Dong B (2018) In situ generation of copper species nanocrystals in TiO2 electrospun nanofibers: a multi-hetero-junction photocatalyst for highly efficient water reduction. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b03361

  60. Wang P, Wen X, Amal R, Ng YH (2015) Introducing a protective interlayer of TiO2 in Cu2O–CuO heterojunction thin film as a highly stable visible light photocathode. RSC Adv. https://doi.org/10.1039/C4RA13464H

  61. An X, Liu H, Qu J, Moniz SJ, Tang J (2015) Photocatalytic mineralisation of herbicide 2, 4, 5-trichlorophenoxyacetic acid: enhanced performance by triple junction Cu–TiO2–Cu2O and the underlying reaction mechanism. New J Chem. https://doi.org/10.1039/C4NJ01317D

  62. Dasineh Khiavi N, Katal R, Kholghi Eshkalak S, Masudy-Panah S, Ramakrishna S, Jiangyong H (2019) Visible light driven heterojunction photocatalyst of CuO–Cu2O thin films for photocatalytic degradation of organic pollutants. Nanomaterials. https://doi.org/10.3390/nano9071011

  63. Janczarek M, Kowalska E (2017) On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. Catalysts. https://doi.org/10.3390/catal7110317

  64. Jiang Q, Ji C, Riley DJ, Xie F (2019) Boosting the efficiency of photoelectrolysis by the addition of non-noble plasmonic metals: Al & Cu. Nanomater. https://doi.org/10.3390/nano9010001

  65. Liu L, Li Y (2014) Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review. Aerosol Air Qual Res. https://doi.org/10.4209/aaqr.2013.06.0186

  66. Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, France. https://doi.org/10.1016/C2010-0-66232-8

  67. Nanayakkara CE, Dillon JK, Grassian VH (2014) Surface adsorption and photochemistry of gas-phase formic acid on TiO2 nanoparticles: the role of adsorbed water in surface coordination, adsorption kinetics, and rate of photoproduct formation. J Phys Chem C. https://doi.org/10.1021/jp507551y

  68. Salvadores F, Minen RI, Carballada J, Alfano OM, Ballari MM (2016) Kinetic study of acetaldehyde degradation applying visible light photocatalysis. Chem Eng Technol. https://doi.org/10.1002/ceat.201500507

Download references

Acknowledgements

The authors would like to acknowledge the support of the University of Tehran and the Iran Nanotechnology Initiative Council for this research. CSIC is acknowledged for supporting experiments carried out at ICP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Sheibani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, F., Sheibani, S., Caudillo-Flores, U. et al. Effect of TiO2 nanoparticle loading by sol–gel method on the gas-phase photocatalytic activity of CuxO–TiO2 nanocomposite. J Sol-Gel Sci Technol 96, 464–479 (2020). https://doi.org/10.1007/s10971-020-05388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05388-8

Keywords

Navigation