Skip to main content
Log in

Study on microstructural and electro-optical properties of sol–gel derived pure and Al/Cu-doped ZnO thin films

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, pure and doped ZnO thin films were prepared by sol–gel-based method and their electro-optical properties were investigated. For doping process, 1 at. % Al and Cu was incorporated in ZnO solution separately, and the thin films were prepared by dip coating method. The microstructure and morphology of calcined ZnO, Al-doped ZnO, and Cu-doped ZnO thin films were evaluated and compared by using various techniques X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and field emission scanning electron microscopy (FESEM). Results showed that nanostructured ZnO thin films with cross-linked nanoparticles (NPs) were formed, and the size of ZnO NPs increased with the Al and Cu doping. It was also found that the substitution and interstitial of Al and Cu dopants caused the instability of ZnO crystal structure and generation of extra point defects. Photoluminescence (PL) properties indicated that the dopants incorporation causes the decline of the PL intensity and the shift of the localized energy states of electrons and holes to lower energy levels. Evaluation of thin films in the UV–Vis range demonstrated that the transparency increased (>94%), and the band gap decreased to 3.08 and 3.06 eV with the incorporation of Al and Cu into ZnO thin films, respectively. The electrical conductivity also improved by Al and Cu doping of ZnO TFs.

Highlights

  • Nanostructured sol-gel doped ZnO thin films show the promising electro-optical properties.

  • Al and Cu dopant could change the parameters of ZnO lattice network.

  • Optical band gap reduced by generation of point defects those act as luminescence quenchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ng ZN, Chan KY, Low CY, Kamaruddin SA, Sahdan MZ (2015) Al and Ga dopedZnO films prepared by a sol–gel spin coating technique. Ceram Int 41:254–258

    Article  CAS  Google Scholar 

  2. Bouaine A, Bourebia A, Guendouz H, Riane Z (2018) Synthesis and characterization of In doped ZnO thin film as efficient transparent conducting oxide candidate. Optik 166:317–322

    Article  CAS  Google Scholar 

  3. Viet Vu D, Hai Le D, Xuan Nguyen C, Quang Trinh T (2019) Comparison of structural and electric properties of ZnO-based n-type thin films with different dopants for thermoelectric applications. J Sol-Gel Sci Technol 91:146–153

    Article  CAS  Google Scholar 

  4. Jafari H, Sadeghzadeh S, Rabbani M, Rahimi R (2018) Effect of Nb on the structural, optical and photocatalytic properties of Aldoped ZnO thin films fabricated by the sol-gel method. Ceram Int 44:20170–20177

    Article  Google Scholar 

  5. Prabhu RR, Saritha AC, Shijeesh MR, Jayaraj MK (2017) Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique. Mater Sci Eng B 220:82–90

    Article  CAS  Google Scholar 

  6. AlArfaj E, Subahi A (2015) The influence of external magnetic field on the structural and optical properties of nanocrystalline ZnO thin films prepared by dip coating method. Superlattic Micros 86:508–517

    Article  CAS  Google Scholar 

  7. Verma K, Chaudhary B, Kumar V, Sharma V, Kumar M (2017) Investigation of structural, morphological and optical properties of Mg: ZnO thin films prepared by sol-gel spin coating method. Vacuum 146:524–529

    Article  CAS  Google Scholar 

  8. Aydın H, Aydın C, Al-Ghamdi AA, Farooq WA, Yakuphanoglu F(2016) Refractive index dispersion properties of Cr-doped ZnO thin films bysol–gel spin coating method Optik 127:1879–1883

    Article  CAS  Google Scholar 

  9. Sharma SK, Singh SP, Kim DY (2018) Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si, substrates by sol-gel method. Solid State Commun 270:124–129

    Article  CAS  Google Scholar 

  10. Tyona MD, Osuji RU, Asogwa PU, Jambure SB, Ezema FI (2017) Structural modification and band gap tailoring of zinc oxide thin films using copper impurities. J Solid State Electrochem 21(9):2629–2638

    Article  CAS  Google Scholar 

  11. Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19

    Article  CAS  Google Scholar 

  12. Sandeep KM, Bhat Shreesha, Serrao FelcyJyothi, Dharmaprakash SM (2018) Effect of 8 MeV electrons irradiation on carrier transport mechanism in ZnO thin films fabricated by sol-gel spin coating technique. Surf Coat Tech 338:96–102

    Article  CAS  Google Scholar 

  13. Benaboud A, Zaabat M, Aida MS, Boudine B, Benzitouni S, Saidani T (2017) Fe2O4/ZnO-nanowires synthesis by dip-coating for Orange II-dye photodegradation. Optik 144:397–405

    Article  CAS  Google Scholar 

  14. Kaushik VK, Mukherjee C, Ganguli T, Sen PK (2017) Electrical and optical characteristics of aerosol assisted CVD grown ZnO based thin film diode and transistor. J Alloy Compd 696(5):727–735

    Article  CAS  Google Scholar 

  15. Mickan M, Helmersson U, Horwat D (2018) Effect of substrate temperature on the deposition of Al-doped ZnO thin films using high power impulse magnetron sputtering. Surf Coat Tech 347(15):245–251

    Article  CAS  Google Scholar 

  16. Dai K, Ying MJ, Lian J, Shi YJ, Cao ZS, Song HN, Wei MY, Jiang QF, Zhang C (2019) Optical properties of polar thin films: ZnO (0001) and ZnO (000–1) on sapphire substrate. Opt Mater 94:272–276

    Article  CAS  Google Scholar 

  17. Amuthan BK, Vinoth S, Karthikeyan V, Roy VAL, Thilakan P (2019) Influence of nitrogen dopant source on the structural, photoluminescence and electrical properties of ZnO thin films deposited by pulsed spray pyrolysis. Ceram Int 45(18):24324–24330

    Article  CAS  Google Scholar 

  18. Cetin SS, Uslu I, Aytimur A, Ozcelik S (2012) Characterization of Mg doped ZnO nanocrystallites prepared via electrospinning. Ceram Int 38:4201–4208

    Article  CAS  Google Scholar 

  19. Istrate AI, Nastase F, Mihalache I, Comanescu F, Gavrila R, Tutunaru O, Romanitan C, Tucureanu V, Nedelcu M, Müller R (2019) Synthesis and characterization of Ca doped ZnO thin films by sol–gel method. J Sol-Gel Sci Technol 92:585

    Article  CAS  Google Scholar 

  20. Yoon Yeo-Chang, Park Kyoung-Seok, Kim Sam-Dong (2015) Effects of low preheating temperature for ZnO seed layer deposited by sol–gel spin coating on the structural properties of hydrothermal ZnO nanorods. Thin Solid Films 597:125–130

    Article  CAS  Google Scholar 

  21. Makableh YF, Vasan R, Sarker JC, Nusir AI, Seal S, Manasreh MO (2014) Enhancement of GaAs solar cell performance by using a ZnO sol–gel antireflection coating. Sol Energy Mater Sol Cells 123:178–182

    Article  CAS  Google Scholar 

  22. Ariyakkani P, Suganya L, Sundaresan B (2017) Investigation of the structural, optical and magnetic properties of Fe doped ZnO thin films coated on glass by sol-gel spin coating method. J Alloy Compd 695:3467–3475

    Article  CAS  Google Scholar 

  23. Sbeta M, Atilgan A, Atli A, Yildiz A (2018) Influence of the spin acceleration time on the properties of ZnO:Ga thin films deposited by sol–gel method. J Sol-Gel Sci Technol 86:513

    Article  CAS  Google Scholar 

  24. Islam MR, Rahman M, Farhad SFU, Podder J (2019) Structural, optical and photocatalysis properties of sol–gel deposited Aldoped ZnO thin films. Surf Interfaces 16:120–126

    Article  CAS  Google Scholar 

  25. Beiraghdar N, Talebian N (2015) Surfactant-assisted ZnO thin films prepared by sol–gel dip coating for applied antibacterial coatings: a comparative study with solvothermal-derived ZnO powders. J Sol-Gel Sci Technol 75:383

    Article  CAS  Google Scholar 

  26. Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  27. Corami A, Mignardi S, Ferrini V (2007) Copper and Zinc decontamination from single- and binary-metal solutions using hydroxyapatite. J Hazard Mater 146(1–2):164–170

    Article  CAS  Google Scholar 

  28. Omri K, Bettaibi A, Khirouni K, El Mir L (2018) The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Phys B Condens Matter 537:167–175

    Article  CAS  Google Scholar 

  29. Peng Z, Wu D, Wang W, Tan F, Wang X, Chen J, Qiao X (2017) Effect of metal ion doping on ZnO nanopowders for bacterial inactivation under visible-light irradiation. Powder Technol 315:73–80

    Article  CAS  Google Scholar 

  30. Osali S, Esfahani H, Karami HR (2018) Effect of Al doping on crystallography and electro-optical properties of ZnO semiconductor thin films prepared by electrospinning. Solid State Sci 83:90–98

    Article  CAS  Google Scholar 

  31. Osali S, Esfahani H, Dabir F, Tajaslan P (2019) Structural and electro-optical properties of electrospun Cu-Doped ZnO thin films. Solid State Sci 98:106038

    Article  CAS  Google Scholar 

  32. Chen Z, Yan Q, Zhao Y, Cao M, Wang J, Wang L (2019) The structure and the optical-electrical properties of the ZnO films and the Al:ZnO/N: ZnO homojunction photodiode. J Sol-Gel Sci Technol 91:101

    Article  CAS  Google Scholar 

  33. Dhamodharan P, Manoharan C, Bououdina M, Venkadachalapathy R, Ramalingam S (2017) Al-doped ZnO thin films grown onto ITO substrates as photoanode in dye sensitized solar cell. Sol Energy 141:127–144

    Article  CAS  Google Scholar 

  34. Liqiang J, Yichun Q, Baiqi W, Shudan L et al. (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90:1773–1787

    Article  CAS  Google Scholar 

  35. Baradaran M, Ghodsi FE (2019) Highly efficient visible photocatalytic degradation of MB organic dye by heteromorphic ZnO/AZO/ZnO nanocatalysts: effect of AZO thickness. J Sol-Gel Sci Technol 92:25–39

    Article  CAS  Google Scholar 

  36. Hasabeldaim E, Ntwaeaborwa OM, Kroon RE, Swart HC (2019) Structural, optical and photoluminescence properties of Eu doped ZnO thin films prepared by spin coating. J Mol Struct 1192:105–114

    Article  CAS  Google Scholar 

  37. Chen X, Qingshuang X, Jitao L (2020) Significantly improved photoluminescence properties of ZnO thin films by lithium doping. Ceram Int 46:2309–2316

    Article  CAS  Google Scholar 

  38. Praveena R, Sameera VS, Mohiddon MdA, Krishna MG (2019) Surface plasmon resonance, photoluminescence and surface enhanced Raman scattering behaviour of Ag/ZnO, ZnO/Ag and ZnO/Ag/ZnO thin films. Phys B 555:118–124

    Article  CAS  Google Scholar 

  39. Ghosh J, Ghosh R, Giri PK (2018) Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sens Actuat B Chem 254:681–68

    Article  CAS  Google Scholar 

  40. Musavi E, Khanlary M, Khakpour Z (2019) Red-orange photoluminescence emission of sol-gel dip-coated prepared ZnO and ZnO:Al nano-crystalline films. J Lumin 216:116696

    Article  CAS  Google Scholar 

  41. Sajjad M, Ullah I, Khan MI, Khan J, Khan MY, Qureshi MT (2018) Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys 9:1301–1309

    Article  Google Scholar 

  42. Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Blue luminescence of ZnO nanoparticles based on non-equilibrium processes, defect origins and emission controls. Adv Funct Mater 20(4):561–572

    Article  CAS  Google Scholar 

  43. West C, Robbins DJ, Dean PJ, Hayes W (1983) The luminescence of copper in zinc oxide. Phys B+C 116(1–3):492–499

    Article  CAS  Google Scholar 

  44. Kuriakose S, Satpati B, Mohapatra S (2015) Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys Chem Chem Phys 17(38):25172–25181

    Article  CAS  Google Scholar 

  45. Srinatha N, Raghu P, Mahesh HM, Angadi B (2017) Spin-coated Al-doped ZnO thin films for optical applications, Structural, micro-structural, optical and luminescence studies. J Alloy Compd 722:888–895

    Article  CAS  Google Scholar 

  46. Coman T, Timpu D, Nica V, Vitelaru C, Rambu AP, Stoian G, Olaru M, Ursu C (2017) Sequential PLD in oxygen/argon gas mixture of Al-doped ZnO thin films with improved electrical and optical properties. Appl Surf Sci 418:456–462

    Article  CAS  Google Scholar 

  47. Salem M, Massoudi I, Akir S, Litaiem Y, Gaidi M, Khirouni K (2017) Photoelectrochemical and opto-electronic properties tuning of ZnO films, effect of Cu doping content. J Alloy Compd 722:313–320

    Article  CAS  Google Scholar 

  48. Masjedi-Arani M, Salavati-Niasari M (2017) Metal (Mn, Co, Ni and Cu) doped ZnO-Zn2SnO4-SnO2 nanocomposites, Green sol-gel synthesis, characterization and photocatalytic activity. J Mol Liq 248:197–204

    Article  CAS  Google Scholar 

  49. Alfaro Cruz MR, Ceballos-Sanchez O, Luévano-Hipólito E, Torres-Martínez LM (2018) ZnO thin films deposited by RF magnetron sputtering: effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. Int J Hydrog Energ 43(22):10301–10310

    Article  CAS  Google Scholar 

  50. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi, B 15(2):627–637

    Article  CAS  Google Scholar 

  51. Kumar V, Singh RG, Purohit LP, Mehra RM (2011) Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline. J Mater Sci Technol 27(6):481–488

    Article  CAS  Google Scholar 

  52. Hun JG, Kim SH, Koh JH (2018) Enhanced electrical and optical properties based on stress reduced graded structure of Al-doped ZnO thin films Ceram Int 44:735–741

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Esfahani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabir, F., Esfahani, H., Bakhtiargonbadi, F. et al. Study on microstructural and electro-optical properties of sol–gel derived pure and Al/Cu-doped ZnO thin films. J Sol-Gel Sci Technol 96, 529–538 (2020). https://doi.org/10.1007/s10971-020-05269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05269-0

Keywords

Navigation