Skip to main content

Advertisement

Log in

Silica-based microspheres with interconnected macroporosity by phase separation

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work reports on a novel method which combines emulsion templating with an adapted sol–gel technique, to create silica-based microspheres with tailored interconnected porosity at the nano, but mostly at the macroscale, due to phase separation by spinodal decomposition. These new materials have potential application in many domains, as support materials, or microscaffolds for (photo)catalysis, biomedical materials, energy storage, or separation, etc. In order to achieve microspheres with the desired coexisting porosity, a water-in-oil (W/O) emulsion is prepared, and phase separation between siloxane-rich domains and water-rich phase is promoted to occur within the aqueous droplets of the emulsion. No specific gelation promoting additives are employed in this work, contrary to other works present in the state of the art. Instead, the silane combination was selected to provide an inherent gelation capability, through the oxirane group of the epoxy silane employed. The obtained microspheres display a diameter and a characteristic size ranging from 26 to 130 µm and 149 ± 11 to 485 ± 38 nm, respectively, as well as a large amount of interconnected macropores, peaked at 164–405 nm, depending on the sample, i.e., on the hydrolysis and emulsification parameters. Longer hydrolysis time and lower hydrolysis pH were found to lead to smaller but more porous microspheres, and higher amount of surfactant was found to lead to smaller microspheres. The achieved microspheres are silica based, of hybrid nature with some organic epoxy functionality, if dried at 150 °C, or of inorganic nature, if heat treated at 700 °C.

Highlights

  • Silica-based microspheres with interconnected macroporosity by emulsion templated sol–gel method.

  • Tailored macroporosity through polymerization induced phase separation by spinodal decomposition.

  • No gelation promoting additives employed.

  • 3-(glycidyloxypropyl)trimethoxysilane (GPTMS) acts as an inherent gelation promoting agent.

  • More viscous sols (hydrolysates) lead to smaller microspheres with larger characteristic size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun MH, Huang SZ, Chen LH, Li Y, Yang XY, Yuan ZY, Su BL (2016) Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev 45:3479–3563. https://doi.org/10.1039/c6cs00135a

    Article  CAS  Google Scholar 

  2. Wang S, Falk MM, Rashad A, Saad MM, Marques AC, Almeida RM, Marei MK, Jain H (2011) Evaluation of 3D nano-macro porous bioactive glass scaffold for hard tissue engineering. J Mater Sci Mater Med 22:1195–1203. https://doi.org/10.1007/s10856-011-4297-4

    Article  CAS  Google Scholar 

  3. Marques AC, Almeida RM, Thiema A, Wang S, Falk MM, Jain H (2009) Sol-gel-derived glass scaffold with high pore interconnectivity and enhanced bioactivity. J Mater Res 24:3495–3502. https://doi.org/10.1557/jmr.2009.0440

    Article  CAS  Google Scholar 

  4. Marques AC, Jain H, Kiely C, Song K, Kiely CJ, Almeida RM (2009) Nano/macroporous monolithic scaffolds prepared by the sol-gel method. J Sol–Gel Sci Technol 51:42–47. https://doi.org/10.1007/s10971-009-1960-z

    Article  CAS  Google Scholar 

  5. Guo X, Wang R, Yu H, Zhu Y, Nakanishi K, Kanamori K, Yang H (2015) Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework. Dalton Trans 44:13592–13601. https://doi.org/10.1039/c5dt01672j

    Article  CAS  Google Scholar 

  6. Feinle A, Elsaesser MS, Hüsing N (2016) Hierarchical organization in monolithic sol–gel materials. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol–gel science and technology. Springer International Publishing, Switzerland, p 1–49

  7. Wang H, Sung I, Xiaodong LI, Kim D (2004) Fabrication of porous SiC ceramics with special morphologies by sacrificing template method J Porous Mater 11:265–271. https://doi.org/10.1023/B:JOPO.0000046353.24308.86

    Article  CAS  Google Scholar 

  8. Wang H, Li XD, Yu JS, Kim DP (2004) Fabrication and characterization of ordered macroporous PMS-derived SiC from a sacrificial template method. J Mater Chem 14:1383–1386. https://doi.org/10.1039/b313405a

    Article  CAS  Google Scholar 

  9. Wan H, Jiang J, Yu J, Xu K, Miao L, Zhang L, Chen H, Ruan Y (2013) NiCo2S4 porous nanotubes synthesis via sacrificial templates: High-performance electrode materials of supercapacitors. CrystEngComm 15:7649–7651. https://doi.org/10.1039/c3ce41243a

    Article  CAS  Google Scholar 

  10. He X, Zhou X, Su B (2009) 3D interconnective porous alumina ceramics via direct protein foaming. Mater Lett 63:830–832. https://doi.org/10.1016/j.matlet.2008.12.021

    Article  CAS  Google Scholar 

  11. Barg S, Soltmann C, Andrade M, Koch D, Grathwohl G (2008) Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. J Am Ceram Soc 91:2823–2829. https://doi.org/10.1111/j.1551-2916.2008.02553.x

    Article  CAS  Google Scholar 

  12. Li F, Kang Z, Huang X, Wang XG, Zhang GJ (2014) Preparation of zirconium carbide foam by direct foaming method. J Eur Ceram Soc 34:3513–3520. https://doi.org/10.1016/j.jeurceramsoc.2014.05.029

    Article  CAS  Google Scholar 

  13. Ren L, Zeng YP, Jiang D (2007) Fabrication of gradient pore TiO2 sheets by a novel freeze–tape‐casting process. J Am Ceram Soc 90:3001–3004. https://doi.org/10.1111/j.1551-2916.2007.01833.x

    Article  CAS  Google Scholar 

  14. Deng ZY, Fernandes HR, Ventura JM, Kannan S, Ferreira JMF (2007) Nano-TiO2-coated unidirectional porous glass structure prepared by freeze drying and solution infiltration. J Am Ceram Soc 90:1265–1268. https://doi.org/10.1111/j.1551-2916.2007.01602.x

    Article  CAS  Google Scholar 

  15. Fukasawa T, Deng ZY, Ando M, Ohji T, Goto Y (2001) Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. J Mater Sci 36:2523–2527. https://doi.org/10.1023/A:1017946518955

    Article  CAS  Google Scholar 

  16. Araki K, Halloran JW (2005) Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. J Am Ceram Soc 88:1108–1114. https://doi.org/10.1111/j.1551-2916.2005.00176.x

    Article  CAS  Google Scholar 

  17. Kajihara K, Kuwatani S, Maehana R, Kanamura K (2009) Macroscopic phase separation in a tetraethoxysilane­water binary sol­gel system. Bull Chem Soc Jpn 82:1470. https://doi.org/10.1246/bcsj.82.1470

    Article  CAS  Google Scholar 

  18. Nakanishi K, Soga N (1991) Phase separation in gelling silica–organic polymer solution: systems containing poly(sodium styrenesulfonate). J Am Ceram Soc 74:2518–2530. https://doi.org/10.1111/j.1151-2916.1991.tb06794.x

    Article  CAS  Google Scholar 

  19. Nakanishi K, Komura H, Takahashi R, Soga N (1994) Phase separation in silica sol–gel system containing poly(ethylene oxide). I. phase relation and gel morphology. Bull Chem Soc Jpn 67:1327–1335. https://doi.org/10.1246/bcsj.67.1327

    Article  CAS  Google Scholar 

  20. Takahashi R, Sato S, Sodesawa T, Azuma T (2004) Silica with bimodal pores for solid catalysts prepared from water glass. J Sol–Gel Sci Technol 31:373–376. https://doi.org/10.1023/B:JSST.0000048020.53138.83

    Article  CAS  Google Scholar 

  21. Kaji H, Nakanishi K, Soga N (1993) Polymerization-induced phase separation in silica sol–gel systems containing formamide. J Sol–Gel Sci Technol 1:35–46. https://doi.org/10.1007/BF00486427

    Article  CAS  Google Scholar 

  22. Nakanishi K (2016) Macroporous morphology control by phase separation. In: Klein L, Aparicio M, Jitiano A (eds) Handbook of sol–gel science and technology. Springer International Publishing, Switzerland, p 1–32

  23. Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition. J Non-Cryst Solids 139:1–13. https://doi.org/10.1016/S0022-3093(05)80800-2

    Article  CAS  Google Scholar 

  24. Yamashita H, Demiya M, Mori H, Maekawa T (1992) Synthesis of microporous silica-gel particles in W/O emulsion and an application to high-performance liquid chromatography. J Ceram Soc Jpn 100:1444–1447. https://doi.org/10.2109/jcersj.100.1444

    Article  CAS  Google Scholar 

  25. Li W, Sha X, Dong W, Wang Z (2002) Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion. Chem Commun 2434–2435. https://doi.org/10.1039/b206020e

  26. Liu JG, Wilcox DL (1995) Factors influencing the formation of hollow ceramic microspheres by water extraction of colloidal droplets. J Mater Res 10:84–94. https://doi.org/10.1557/JMR.1995.0084

    Article  CAS  Google Scholar 

  27. Singh RK, Garg A, Bandyopadhyaya R, Mishra BK (2007) Density fractionated hollow silica microspheres with high-yield by non-polymeric sol-gel/emulsion route. Colloids Surf A Physicochem Eng Asp 310:39–45. https://doi.org/10.1016/j.colsurfa.2007.05.064

    Article  CAS  Google Scholar 

  28. Bush AJ, Beyer R, Trautman R, Barbé CJ, Bartlett JR (2004) Ceramic micro-particles synthesised using emulsion and sol–gel technology: an investigation into the controlled release of encapsulants and the tailoring of micro-particle size. J Sol–Gel Sci Technol 32:85–90. https://doi.org/10.1007/s10971-004-5770-z

    Article  CAS  Google Scholar 

  29. Li D, Guan Z, Zhang W, Zhou X, Zhang WY, Zhuang Z, Wang X, Yang CJ (2010) Synthesis of uniform-size hollow silica microspheres through interfacial polymerization in monodisperse water-in-oil droplets. ACS Appl Mater Interfaces 2:2711–2714. https://doi.org/10.1021/am100593b

    Article  CAS  Google Scholar 

  30. Loureiro MV, Vale M, De Schrijver A, Bordado JC, Silva E, Marques AC (2018) Hybrid custom-tailored sol-gel derived microscaffold for biocides immobilization. Microporous Mesoporous Mater 261:252–258. https://doi.org/10.1016/j.micromeso.2017.10.056

    Article  CAS  Google Scholar 

  31. Loureiro MV, Ciriminna R, Lourenço MJ, Santos LF, De Schrijver A, Bordado JC, Pagliaro M, Marques AC (2017) Organically-modified silica based microspheres for self-curing polyurethane one component foams. Microporous Mesoporous Mater 244:244–250. https://doi.org/10.1016/j.micromeso.2016.10.039

    Article  CAS  Google Scholar 

  32. Marques AC, Loureiro MV, Lourenço MJ, De Schrijver A, Bordado JC (2017) Amino surface functionalized microcapsules as curing agents for polyurethane foams. Mater Manuf Process 32:1304–1309. https://doi.org/10.1080/10426914.2017.1291950

    Article  CAS  Google Scholar 

  33. Loureiro MV, Lourenço MJ, De Schrijver A, Santos LF, Bordado JC, Marques AC (2017) Amino-silica microcapsules as effective curing agents for polyurethane foams. J Mater Sci 52:5380–5389. https://doi.org/10.1007/s10853-017-0782-6

    Article  CAS  Google Scholar 

  34. Marques A, Loureiro M, Geraldes E, Bordado J, Greenseal Research Ltd (2016) Custom-tailored sol–gel derived matrixes for chemical immobilization, Application number: 16190468.5/EP3299083A1

  35. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  36. Takahashi R, Sato S, Sodesawa T, Suzuki K, Tafu M, Nakanishi K, Soga N (2004) Phase separation in sol–gel process of alkoxide-derived silica-zirconia in the presence of polyethylene oxide. J Am Ceram Soc 84:1968–1976. https://doi.org/10.1111/j.1151-2916.2001.tb00944.x

    Article  Google Scholar 

  37. Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA (1982) Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson 49:341–345. https://doi.org/10.1016/0022-2364(82)90199-8

    Article  CAS  Google Scholar 

  38. Le Bideau J, Miah MY, Vioux A, Fajula F, Galarneau A (2010) Bimodal porous silica monoliths obtained by phase separation in non-aqueous media. J Mater Chem 20:964–971. https://doi.org/10.1039/b918412k

    Article  CAS  Google Scholar 

  39. Rubinstein M, Colby RH (2003) Polymer physics, 1st edn. Oxford University Press, USA

    Google Scholar 

  40. Kanamori K, Nakanishi K (2011) Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem Soc Rev 40:754–770. https://doi.org/10.1039/c0cs00068j

    Article  CAS  Google Scholar 

  41. Gabrielli L, Russo L, Poveda A, Jones JR, Nicotra F, Jiménez-Barbero J, Cipolla L (2013) Epoxide opening versus silica condensation during sol-gel hybrid biomaterial synthesis. Chem Eur J 19:7856–7864. https://doi.org/10.1002/chem.201204326

    Article  CAS  Google Scholar 

  42. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  43. Gheorghiu S, Coppens MO (2004) Optimal bimodal pore networks for heterogeneous catalysis. AIChE J 50:812–820. https://doi.org/10.1002/aic.10076

    Article  CAS  Google Scholar 

  44. Gallardo J, Durán A, Di Martino D, Almeida RM (2002) Structure of inorganic and hybrid SiO2 sol–gel coatings studied by variable incidence infrared spectroscopy. J Non Cryst Solids 298:219–225. https://doi.org/10.1016/S0022-3093(02)00921-3

    Article  CAS  Google Scholar 

  45. Almeida RM, Marques AC (2016) Characterization of sol–gel materials by infrared spectroscopy. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol–gel science and technology. Springer International Publishing, Switzerland, p 1–31

  46. Almeida RM, Pantano CG (1990) Structural investigation of silica gel films by infrared spectroscopy. J Appl Phys 68:4225–4232. https://doi.org/10.1063/1.346213

    Article  CAS  Google Scholar 

  47. Galeener FL (1979) Band limits and the vibrational spectra of tetrahedral glasses. Phys Rev B 19:4292–4297. https://doi.org/10.1103/PhysRevB.19.4292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Flávio Ferreira for the viscosity measurements, to Prof. J. G. Martinho for fruitful discussions on polymer phase separation and to Prof. Carlos Henriques, Dr. Carmen Bacariza, and Prof. Laura Ilharco for achieving the nitrogen adsorption–desorption isotherms. The NMR spectrometers are part of the National NMR Network (PTNMR) and are partially supported by Infrastructure Project no. 022161 (co-financed by FEDER through COMPETE 2020, POCI and PORL and FCT through PIDDAC). We thank Fundação para a Ciência e a Tecnologia (FCT) through the support of CERENA (strategic project FCT-UID/ECI/04028/2019) and the grants SFRH/BD/138717/2018 (MV) and SFRH/BD/140700/2018 (MVL). We are also grateful to the Dow Chemical Company (Dow) for the kind supply of the silanes for this study, such as (3-glycidyloxypropyl)trimethoxysilane (Xiameter OFS-6040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vale, M., Loureiro, M.V., Ferreira, M.J. et al. Silica-based microspheres with interconnected macroporosity by phase separation. J Sol-Gel Sci Technol 95, 746–759 (2020). https://doi.org/10.1007/s10971-020-05257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05257-4

Keywords

Navigation