Skip to main content
Log in

The effect of Ag and CeO2 distribution on SBA-15 surface on the activity of Ag–CeO2/SBA-15 catalysts in CO and methanol oxidation

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The series of catalysts representing the mesoporous ordered silica SBA-15 with supported silver or silver and ceria nanoparticles were synthesized by incipient wetness impregnation, characterized by the low-temperature N2 adsorption, XRD, TEM HR, TPR-H2 methods, and tested in the low-temperature CO oxidation and total oxidation of methanol. It was found that two types of silver particles are formed: small particles (<3 nm) inside the pores of the SBA-15 and larger particles (3–15 nm) on the external surface of SBA-15. High activity of the prepared catalyst in oxidation of CO and methanol is attributed to both small sizes of silver particles and the Ag–CeO2 interaction. The distribution of both silver and ceria on the SBA-15 surface determines their interaction and, hence, enhances the catalytic activity in oxidative reactions due to the cooperation of active oxidative sites of silver and ceria at the Ag–CeO2 interface.

Highlights

  • Ag-containing catalysts were synthesized on the basis of mesoporous ordered silica SBA-15.

  • The formation of two types of silver particles was shown.

  • Ag–CeO2/SBA-15 catalysts are promising for low temperature oxidation of CO and methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shimoda N, Umehara S, Kasahara M, Hongo T, Yamazaki A, Satokawa S (2015) Appl Catal, A 507:56–64

    Article  CAS  Google Scholar 

  2. Huang H, Xu Y, Feng Q, Leung DY (2015) Catal Sci Technol 5:2649–2669

    Article  CAS  Google Scholar 

  3. Gaálová J, Topka P, Kaluža L, Soukup K, Barbier Jr J (2018) Catal Today (Article in press) https://doi.org/10.1016/j.cattod.2018.04.005

    Article  Google Scholar 

  4. Xia Y, Xia L, Liu Y, Yang T, Deng J, Dai H (2018) J Environ Sci 64:276–288

    Article  Google Scholar 

  5. Peng R, Li S, Sun X, Ren Q, Chen L, Fu M, Wu J, Ye D (2018) App Catal B 220:462–470

    Article  CAS  Google Scholar 

  6. Pulleri JK, Yearwar D, Saravanan G, Rayalu S, Labhasetwar N (2018) J Nanosci Nanotechnol 18:419–425

    Article  CAS  Google Scholar 

  7. Meng Q, Liu J, Weng X, Sun P, Darr JA, Wu Z (2018) Catal Sci Technol 8:1858–1866

    Article  CAS  Google Scholar 

  8. Todorova S, Naydenov A, Kolev H, Ivanov G, Ganguly A, Mondal S, Saha S, Ganguli AK (2018) React Kinet Mech Catal 123:585–605

    Article  CAS  Google Scholar 

  9. Laura U, Arruebo M, Sebastian V (2018) Dalton Trans 47:1693–1702

    Article  CAS  Google Scholar 

  10. Li H, Wang Y, Chen X, Liu S, Zhou Y, Zhu Q, Chen Y, Lu H (2018) RSC Adv 8:14806–14811

    Article  CAS  Google Scholar 

  11. Tang W, Deng Y, Chen Y (2017) Catal Commun 89:86–90

    Article  CAS  Google Scholar 

  12. Qin Y, Qu Z, Dong C, Huang N (2017) Chin J Catal 38:1603–1612

    Article  CAS  Google Scholar 

  13. Grabchenko M, Mikheeva N, Mamontov G, Salaev M, Liotta L, Vodyankina O (2018) Catalysts 8:285

    Article  Google Scholar 

  14. Cordi EM, Falconer JL (1997) Appl Catal A 151:179–191

    Article  CAS  Google Scholar 

  15. Tang X, Feng F, Ye L, Zhang X, Huang Y, Liu Z, Yan K (2013) Catal Today 211:39–43

    Article  CAS  Google Scholar 

  16. Corberán VC, Rives V, Stathopoulos V (2019) Recent applications of nanometal oxide catalysts in oxidation reactions. In advanced nanomaterials for catalysis and energy. Elsevier, pp 227–293

  17. Pandis PK, Perros DE, Stathopoulos VN (2018) Catal Commun 114:98–103

    Article  CAS  Google Scholar 

  18. Lykaki M, Stefa S, Carabineiro SA, Pandis PK, Stathopoulos VN, Konsolakis M (2019) Catalysts 9:371

    Article  CAS  Google Scholar 

  19. Stathopoulos VN, Belessi VC, Costa CN, Neophytides S, Falaras P, Efstathiou AM, Pomonis PJ (2000) Stud Surf Sci Catal 130:1529–1534

    Article  Google Scholar 

  20. Vodyankina OV, Mamontov GV, Dutov VV, Kharlamova TS, Salaev MA (2019) Ag-containing nanomaterials in heterogeneous catalysis: Advances and recent trends. In advanced nanomaterials for catalysis and energy. Elsevier, pp 143–175

  21. Mikheeva NN, Zaikovskii VI, Mamontov GV (2019) Microporous Mesoporous Mater 277:10–16

    Article  CAS  Google Scholar 

  22. Grabchenko MV, Mamontov GV, Zaikovskii VI, La Parola V, Liotta LF, Vodyankina OV (2019) Catal Today (Article in press) https://doi.org/10.1016/j.cattod.2018.05.014

    Article  CAS  Google Scholar 

  23. Mamontov GV, Grabchenko MV, Sobolev VI, Zaikovskii VI, Vodyankina OV (2016) Appl Catal A528:161–167

    Article  Google Scholar 

  24. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  25. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015), Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  26. Meynen V, Cool P, Vansant EF (2009) Microporous Mesoporous Mater 125:170–223

    Article  CAS  Google Scholar 

  27. Galarneau A, Cambon H, Di Renzo F, Ryoo R, Choi M, Fajula F (2003) New J Chem 27:73–79

    Article  CAS  Google Scholar 

  28. Imperor-Clerc M, Davidson P, Davidson A (2000) J Am Chem Soc 122:11925–11933

    Article  CAS  Google Scholar 

  29. Dutov VV, Mamontov GV, Zaikovskii VI, Vodyankina OV (2016) Catal Today 278:150–156

    Article  CAS  Google Scholar 

  30. Grabchenko MV, Mamontov GV, Zaikovskii VI, Vodyankina OV (2017) Kinet Catal 58:642–648

    Article  CAS  Google Scholar 

  31. Dutov VV, Mamontov GV, Zaikovskii VI, Liotta LF, Vodyankina OV (2018) Appl Catal B 221:598–609

    Article  CAS  Google Scholar 

  32. Bondarchuk IS, Mamontov GV (2015) Kinet Catal 56:379–385

    Article  CAS  Google Scholar 

  33. Mamontov GV, Dutov VV, Sobolev VI, Vodyankina OV (2013) Kinet Catal 54:487–491

    Article  CAS  Google Scholar 

  34. Kharlamova T, Mamontov G, Salaev M, Zaikovskii V, Popova G, Sobolev V, Knyazev A, Vodyankina O (2013) Appl Catal A 467:519–529

    Article  CAS  Google Scholar 

  35. Zhang X, Qu Z, Yu F, Wang Y, Zhang X (2013) J Mol Catal A: Chem 370:160–166

    Article  CAS  Google Scholar 

  36. Zhang X, Dong H, Wang Y, Liu N, Zuo Y, Cui L (2016) Chem Eng J 283:1097–1107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 18-73-10109). The authors thank Dr. Mikhail Salaev (Tomsk State University) for language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Mamontov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheeva, N.N., Zaikovskii, V.I. & Mamontov, G.V. The effect of Ag and CeO2 distribution on SBA-15 surface on the activity of Ag–CeO2/SBA-15 catalysts in CO and methanol oxidation. J Sol-Gel Sci Technol 92, 398–407 (2019). https://doi.org/10.1007/s10971-019-05031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05031-1

Keywords

Navigation