Skip to main content
Log in

Amine functionalized mesoporous hybrid materials: influence of KCl and xylene on the textural characteristics and CO2 sorption

  • Original Paper:Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Amine-functionalized mesoporous silica materials were prepared by sol–gel method in the system tetraethylortosilicate: bis[(3- trimethoxysilyl)propyl]amine (TEOS: BTPA). The hybrid amine functionalized silica materials were synthesized by co-condensation reaction between TEOS and BTPA precursors in acidic media. Soft template approach for pore formation was applied and as a structural directing agent was used surfactant Pluronic P123. For improving of pore ordering and textural characteristics xylene and KCl were used and their influence on the structural and morphological characteristics was investigated by FTIR, 13C CP MAS NMR, 29Si MAS NMR, BET, PSD and XRD techniques. CO2 adsorption properties of the synthesized amine functionalized hybrid materials were investigated. The simultaneous presence of xylene and KCl leads to improvement of the pore ordering, increasing of the textural characteristics values and formation of cylindrical pores. The determined heats of CO2 adsorption evidenced chemisorption process between CO2 and the amine groups of the hybrid materials.

Influence of KCl and xylene on micelles size and pore size of the hybrid materials after surfactant (Pluronic P123) extraction.

Highlights

  • Amine functionalized silicas are prepared by TEOS, BTPA and Pluronic P123.

  • Simultaneous presence of xylene and KCl leads to improvement of the pore ordering.

  • Heats of adsorption evidence chemisorption between the amine groups and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feng B, Du M, Dennis TJ, Anthony K, Perumal MJ (2010) Reduction of energy requirement of CO2 desorption by adding acid into CO2-loaded solvent. Energy Fuels. https://doi.org/10.1021/ef900564x

  2. Li Y (2008) Study on corrosion and material selection for desulphurization unit in refinery. Petrol Refine Eng. 38:24–27

    Google Scholar 

  3. Gargiulo N, Pepe F, Caputo D (2014) CO2 Adsorption by functionalized nanoporous materials: a review. J Nanosci. Nanotechnol. 14:1811–1822

    Article  Google Scholar 

  4. Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ (2009) Hollow Fiber adsorbents for CO2 removal from flue gas. Ind Eng Chem Res. https://doi.org/10.1021/ie9005244

  5. Su F, Lu C, Kuo SC, Zeng W (2010) Adsorption of CO2 on amine-functionalized Y-type zeolites. Energy Fuels https://doi.org/10.1021/ef901077k

  6. Sevilla M, Fuertes AB (2012) CO2 adsorption by activated templated carbons. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2011.09.038

  7. Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G (2013) Activated carbons and amine-modified materials for carbon dioxide capture—a review. Front Environ Sci Eng. 7:326–340. https://doi.org/10.1007/s11783-013-0510-7

    Article  Google Scholar 

  8. Modak A, Nandi M, Mondal J, Bhaumik A (2012) Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem. Commun. 48:248–250. https://doi.org/10.1039/C1CC14275E

    Article  Google Scholar 

  9. Wei Y, Li X, Zhang R, Liu Y, Wang W, Ling Y, El-Toni AM, Zhao D (2016) Periodic mesoporous organosilica nanocubes with ultrahigh surface areas for efficient CO2 adsorption. Sci Rep. https://doi.org/10.1038/srep20769

  10. Tang Y, Landskron K (2010) CO2-sorption properties of organosilicas with bridging amine functionalities inside the framework. J Phys Chem C. https://doi.org/10.1021/jp9095612

  11. Comotti A, Bracco S, Valsesia P, Ferretti L, Sozzani P (2007) 2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls. J Am Chem Soc. https://doi.org/10.1021/ja071348y

  12. Liu M, Lu X, Shi L, Wang F, Sun J (2017) Periodic mesoporous organosilica with a basic urea-derived framework for enhanced carbon dioxide capture and conversion under mild conditions. ChemSusChem. https://doi.org/10.1002/cssc.201600973

  13. Li B, Wen HM, Zhou W, Chen BJ (2014) Porous metal–organic frameworks for gas storage and separation: What, How, and Why? Phys Chem Lett. https://doi.org/10.1021/jz501586e

  14. Wang K, Feng D, Liu TF, Su J, Yuan S, Chen YP, Bosch M, Zou X, Zhou HC (2014) A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J Am Chem Soc. https://doi.org/10.1021/ja507269n

  15. Taylor MK, Runčevski T, Oktawiec J, Gonzalez MI, Siegelman RL, Mason JA, Ye J, Brown CM, Long JR (2016) Tuning the adsorption-induced phase change in the flexible metal–organic framework Co(bdp). J Am Chem Soc. https://doi.org/10.1021/jacs.6b09155

  16. Jiang J, Furukawa H, Zhang YB, Yaghi OM (2016) High methane storage working capacity in metal–organic frameworks with acrylate links. J Am Chem Soc. https://doi.org/10.1021/jacs.6b05261

  17. Sayari A (2003) In: Yang P (ed) The chemistry of nanostructured materials, World Scientific, Singapore

  18. Sayari A, Kruk M, Jaroniec M, Moudrakovski IL (1998) New approaches to pore size engineering of mesoporous silicates. Adv Mater. https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1376::AID-ADMA1376>3.0.CO;2-B

  19. Sayari A, Yang Y, Kruk M, Jaroniec M (1999) Expanding the pore size of MCM41 silicas: use of amines as expanders in direct synthesis and postsynthesis procedures. J Phys Chem. https://doi.org/10.1021/jp984504j

  20. Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derksa D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem. Commun. 48:10283–10285. https://doi.org/10.1039/c2cc35334b

    Article  Google Scholar 

  21. Mello M, Phanon D, Silveira G, Llewellyn P, Ronconi C. (2011) Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Micropor Mesopor Mater. https://doi.org/10.1016/j.micromeso.2011.02.022

  22. Chiang YC, Hsu WL, Lin SY, Juang RS (2017) Enhanced CO2 adsorption on activated carbon fibers grafted with nitrogen-doped carbon nanotubes. Materials https://doi.org/10.3390/ma10050511

  23. Hüsing N (2007) In: Kickelbick G (ed) Hybrid materials: synthesis, characterization, and applications, Wiley-VCH, Weinheim, Germany

  24. Harlick PJE, Sayari A (2007) Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Ind Eng Chem Res. https://doi.org/10.1021/ie060774+

  25. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. https://doi.org/10.1002/cssc.200900036

  26. Hoffmann F, Froba M (2011) Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev. 40:608–620. https://doi.org/10.1039/c0cs00076k

    Article  Google Scholar 

  27. Gatti G, Costenaro D, Vittoni C, Paul G, Crocella V, Mangano E, Brandani S, Bordiga S, Cossi M, Marchesea L, Bisio C (2017) CO2 adsorption on different organo-modified SBA-15 silicas: a multidisciplinary study on the effects of basic surface groups. Phys Chem Chem Phys. https://doi.org/10.1039/c6cp08048k

  28. Esam O, Zhou G, Vasiliev A (2015) Bridged mesoporous silsesquioxanes as potential CO2 adsorbents. J Sol Gel Sci Technol. https://doi.org/10.1007/s10971-015-3657-9

  29. Quang DV, Dindi A, Abu-Zahraр MRM (2017) One-step process using CO2 for the preparation of amino-functionalized mesoporous silica for CO2 capture application. ACS Sustainable Chem Eng. https://doi.org/10.1021/acssuschemeng.6b02961

  30. Vilarrasa-García E, Cecilia JA, Moya EMO, Cavalcante CL, Jr, Azevedo DCS, Rodríguez-Castellón E (2015) “Low cost” pore expanded SBA-15 functionalized with amine groups applied to CO2 adsorption. Materials. https://doi.org/10.3390/ma8052495

  31. Ko YG, Shin SS, Choi US (2011) Primary, secondary, and tertiary amines for CO2 capture: Designing for mesoporous CO2 adsorbents. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2011.03.045

  32. Canck ED, Ascoop I, Sayari A, Voort PVD (2013) Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. Phys Chem Chem Phys. https://doi.org/10.1039/c3cp50393c

  33. Neimark A, Ravikovitch P (2001) Capillary condensation in MMS and pore structure characterization. Micropor Mesopor Mater. https://doi.org/10.1016/S1387-1811(01)00251-7

  34. Yasmin T, Müller K (2011) Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography. J Chromatograph A. https://doi.org/10.1016/j.chroma.2011.07.035

  35. Wei Q, Liu L, Nie ZR, Chen HQ, Wang YL, Li QY, Zou JX (2007) Functionalization of periodic mesoporous organosilica with ureidopropyl groups by a direct synthesis method. Micropor Mesopor Mater. https://doi.org/10.1016/j.micromeso.2006.09.014

  36. Lippens BC, de Boer JH (1965) Studies on pore systems in catalysts. V. The t-method. J Catal. https://doi.org/10.1016/0021-9517(65)90307-6

  37. ALOthman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Materials. https://doi.org/10.3390/ma5122874

  38. Bui TX, Kang SY, Lee SH, Choi H (2011) Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2011.07.043

  39. Zhou G, Simerly T, Golovko L, Tychinin I, Trachevsky V, Gomza Y, Vasiliev A (2012) Highly functionalized bridged silsesquioxanes. J Sol Gel Sci Technol. https://doi.org/10.1007/s10971-012-2751-5

  40. Handke M, Handke B, Kowalewska A, Jastrzebski W (2009) New polysilsesquioxane materials of ladder-like structure. J Mol Struct. 924–926:254–263. https://doi.org/10.1016/j.molstruc.2008.11.039

    Article  Google Scholar 

  41. Wahab MA, Kim I, Ha CS (2004), Bridged amine-functionalized mesoporous organosilica materials from 1,2-bis(triethoxysilyl)ethane and bis[(3-trimethoxysilyl)propyl]amine. J Solid State Chem. https://doi.org/10.1016/j.jssc.2004.05.062

  42. Park M, Park SS, Selvaraj M, Zhao D, Ha CS (2009) Hydrophobic mesoporous materials for immobilization of enzymes. Micropor Mesopor Mater. https://doi.org/10.1016/j.micromeso.2009.04.032

  43. Wang X, Lin KSK, Chan JCC, Cheng S (2005) Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J Phys Chem B. https://doi.org/10.1021/jp045798d

  44. Zhu F, Yang D, Zhang F, Li H (2012) Amine-bridged periodic mesoporous organosilica nanospheres as an active and reusable solid base-catalyst for water-medium and solvent-free organic reactions. J Mol Catal A Chem. https://doi.org/10.1016/j.molcata.2012.07.015

  45. Metroke T, Wang Y, van Ooij WJ, Schaefer DW (2009) Chemistry of mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane: an NMR analysis. J Sol Gel Sci Technol. https://doi.org/10.1007/s10971-009-1927-0

  46. Bérubé F, Kaliaguine S (2008) Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Micropor Mesopor Mater. https://doi.org/10.1016/j.micromeso.2008.02.028

  47. Newalkar BL, Komarneni S (2001) Control over microporosity of ordered microporous−mesoporous silica SBA-15 framework under microwave-hydrothermal conditions: effect of salt addition. Chem Mater. https://doi.org/10.1021/cm0103038

  48. Alexandridis P, Holzwarth JF (1997) Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer). Langmuir 13:6074–6082. https://doi.org/10.1021/la9703712

    Article  Google Scholar 

  49. Yang B, Guo C, Chen S, Ma J, Wang J, Liang X, Zheng L, Liu H (2006) Effect of acid on the aggregation of poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) block copolymers. J Phys Chem B. https://doi.org/10.1021/jp0634149

  50. Ma J, Liu Q, Chen D, Wen S, Wang T (2015) Synthesis and characterisation of pore-expanded mesoporous silica materials. Micro Nano Lett. https://doi.org/10.1049/mnl.2014.0413

  51. ruk M (2012) Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/ swelling-agent micellar templates. Acc Chem Res. https://doi.org/10.1021/ar200343s.

  52. Yu L, Kanezashi M, Nagasawa H, Moriyama N, Tsuru T, Ito K (2018) Enhanced CO2 separation performance for tertiary amine‐silica membranes via thermally induced local liberation of CH3Cl. AIChE J. https://doi.org/10.1002/aic.16040

  53. Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc. https://doi.org/10.1021/ja1013773

  54. Mello MR, Phanon D, Silveira GQ, Llewellyn PL, Ronconi CM (2011) Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Micropor Mesopor Mater. https://doi.org/10.1016/j.micromeso.2011.02.022

  55. eleňák V, Badaničová M, Halamová D, Čejka J, Zukal A, Murafa N, Goerigk G (2008) Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chem Eng Sci. https://doi.org/10.1016/j.cej.2008.07.025

  56. Hahn MW, Jelic J, Berger E, Reuter K, Jentys A, Lercher JA (2016) Role of amine functionality for CO2 chemisorption on silica. J Phys Chem. https://doi.org/10.1021/acs.jpcb.5b10012

  57. Yu L, Kanezashi M, Nagasawa H, Tsuru TI (2018) Role of amine type in CO2 separation performance within amine functionalized silica/organosilica membranes: a review. Appl Sci. https://doi.org/10.3390/app8071032

Download references

Acknowledgements

The authors thank the Department of Materials & Ceramic Engineering, CICECO, University of Aveiro, Aveiro 3810-193, Portugal for performing of some of the materials analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Velikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velikova, N., Spassova, I. Amine functionalized mesoporous hybrid materials: influence of KCl and xylene on the textural characteristics and CO2 sorption. J Sol-Gel Sci Technol 91, 374–384 (2019). https://doi.org/10.1007/s10971-019-04998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-04998-1

Keywords

Navigation