Skip to main content
Log in

Optimization the selectivity property of graphene oxide modified dimensionally stable anode (DSA) produced by the sol–gel method

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The novel mixed metal oxide (MMO) coatings of TiO2–RuO2 modified with graphene oxide (GO)/reduced graphene oxide (rGO) nanosheets were synthesized and investigated on the Ti substrate by the sol–gel approach. Central composite design (CCD) and response surface methodology (RSM) were used to simulate and optimize the graphene compounds additive in the coating. The slope difference in the transpassive region at NaCl and H2SO4 solutions was considered as the significant factor for the selectivity of anode between the competitive evolution reactions of oxygen and chlorine. In order to characterize the coating, XRD, FTIR, FESEM, TEM, AFM tests, CV, polarization, and EIS curves were carried out. The obtained optimal condition included the GO concentration of 0.56 mg ml−1, the rGO concentration of about 0.56 mg ml−1, and the layers number of 4. It was predicted that the optimal selectivity of the graphene modified electrode is approximately 83.189, which was measured to be about 84.944 at the reproducible level. Indeed, the model for simulating the graphene modification was suitable and reliable.

Highlights

  • DSA electrocatalyst coatings modified with GO/rGO nanosheets on the titanium substrate were synthesized by sol–gel method using the experimental design.

  • Simulation and optimization of the amount of GO/rGO additives to the coating and number of applied coating layers on the selectivity property of anodic reactions of the DSA electrode were done by CCD and RSM method.

  • The difference in slope of the transpassive region in NaCl + H2SO4 solutions was considered as the important factor in the selectivity of anode between competitive evolution reactions of chlorine and oxygen at the electrode surface, and the optimal DSA coating conditions including GO/rGO were obtained by the proposed model.

  • TOF measurements and GC-MS analysis confirmed that the use of GO and rGO has improved the intrinsic electrocatalytic properties accompanied by an electrochemically active surface area of electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yi Z, Xinxin Z, Yujie Z (2009) Ti-based anodes with metal oxide coatings. Prog Chem 21(9):1827–1831

    Google Scholar 

  2. Bespalova ZI, Ivanov VV, Smirnitskaya IV, Fesenko LN, Kudryavtsev YD (2010) Fabrication of a titanium anode with an active coating based on mixed oxides of base metals. Russ J Appl Chem 83(2):242–246

    Article  CAS  Google Scholar 

  3. Panić V, Dekanski A, Mišković Stanković VB, Milonjić S, Nikolić B (2005) On the deactivation mechanism of RuO2-TiO2/Ti anodes prepared by the sol-gel procedure. J Electroanal Chem 579(1):67–76

    Article  CAS  Google Scholar 

  4. Panic V, Dekanski AB, Miskovic V (2003) The role of titanium oxide concentration profile of titanium oxide of RuO2-TiO2 coatings obtained by the sol-gel procedure on its electrochemical behavior. J Serb Chem Soc 68(12):979–988

    Article  CAS  Google Scholar 

  5. Wei H, Wang G, Luo Y, Li D, Meng Q (2015) Investigation on interfacial charge transfer process in CdSexTe1-x alloyed quantum dot sensitized solar cells. Electrochim Acta 173:156–163

    Article  CAS  Google Scholar 

  6. Li K, Wang XF, Zeng HC (1997) Kinetics of N2O decopmosition on a RuO2 /Al2O3 catalyst. Chem Eng Res Des 75(8):807–812

    Article  CAS  Google Scholar 

  7. Chen R, Trieu V, Schley B, Natter H, Kintrup J, Bulan A, Weber R, Hempelmann R (2013) Anodic electrocatalytic coatings for electrolytic chlorine production: a review. Z für Phys Chem 227(i):651–666

    Article  CAS  Google Scholar 

  8. Chen R, Trieu V, Zeradjanin AR, Natter H, Teschner D, Kintrup J, Bulan A, Schuhmann W, Hempelmann R (2012) Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. Phys Chem Chem Phys 14(20):7392

    Article  CAS  Google Scholar 

  9. Goudarzi M, Ghorbani M (2016) Deposition of (Ti, Ru)O2 and (Ti, Ru, Ir)O2 oxide coatings prepared by sol-gel method on titanium. J Sol-Gel Sci Technol 79(1):44–50

    Article  CAS  Google Scholar 

  10. Panić V, Dekanski A, Wang G, Fedoroff M, Milonjić S, Nikolić B (2003) Morphology of RuO2-TiO2 coatings and TEM characterization of oxide sols used for their preparation. J Colloid Interface Sci 263(1):68–73

    Article  CAS  Google Scholar 

  11. Goudarzi M, Ghorbani M (2014) A study on ternary mixed oxide coatings containing Ti, Ru, Ir by sol-gel method on titanium. J Sol-Gel Sci Technol 73(2):332–340

    Article  CAS  Google Scholar 

  12. Aparicio M, Klein L (2004) Thin and thick RuO 2-TiO 2 coatings on titanium substrates by the sol-gel process. J Sol-Gel Sci Technol 29(2):81–88

    Article  CAS  Google Scholar 

  13. Pouladvand I, Asl SK, Hoseini MG, Rezvani M (2019) Characterization and electrochemical behavior of Ti/TiO2–RuO2–IrO2–SnO2 anodes prepared by sol–gel process. J Sol-Gel Sci Technol 89(2):553–561. https://doi.org/10.1007/s10971-018-4887-4

    Article  CAS  Google Scholar 

  14. Karlsson RKB (2015) Theoretical and experimental studies of electrode and electrolyte processes in industrial electrosynthesis. Stockholm, Sweden: KTH Royal Institute of Technology

  15. Ardizzone S, Falciola M, Trasatti S (1989) Effect of the nature of the precursor on the electrocatalytic properties of thermally prepared ruthenium oxide. J Electrochem Soc 136(5):1545–1550

    Article  CAS  Google Scholar 

  16. Gaudet J, Tavares aC, Trasatti S, Guay D (2005) Physicochemical characterization of mixed RuO2 -SnO2 solid solutions. Chem Mater 17:1570–1579

    Article  CAS  Google Scholar 

  17. Yousefpour M, Shokuhy A (2012) Electrodeposition of TiO2–RuO2–IrO2 coating on titanium substrate. Superlattices Microstruct 51(6):842–853

    Article  CAS  Google Scholar 

  18. Therese GHA, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12(5):2000

    Google Scholar 

  19. Panić VV, Dekanski a, Milonjić SK, Atanasoski RT, Nikolić BŽ (1999) RuO2-TiO2 coated titanium anodes obtained by the sol-gel procedure and their electrochemical behaviour in the chlorine evolution reaction. Colloids Surf A Physicochem Eng Asp 157:269–274

    Article  Google Scholar 

  20. Kristóf J, Horváth E, Daolio S (2013) Study of metal oxide electrocatalytic thin film evolution by thermoanalytical and spectroscopic techniques-a review. Electrocatalysis 4(4):196–202

    Article  CAS  Google Scholar 

  21. Terezo AJ, Pereira EC (2002) Preparation and characterisation of Ti/RuO2 anodes obtained by sol–gel and conventional routes. Mater Lett 53(4–5):339–345

    Article  CAS  Google Scholar 

  22. Hayfield P (1998) Development of the noble metal/oxide coated titanium electrode. Part 1: The Beginning of the Hystory. Platin Met Rev 42(3):27–33

    CAS  Google Scholar 

  23. Xiong K, Deng Z, Li L, Chen S, Xia M, Zhang L, Qi X, Ding W, Tan S, Wei Z (2013) Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution. J Appl Electrochem 43(8):847–854

    Article  CAS  Google Scholar 

  24. Abbott DF, Petrykin V, Okube M, Bastl Z, Mukerjee S, Krtil P (2015) Selective chlorine evolution catalysts based on Mg-doped nanoparticulate ruthenium dioxide. J Electrochem Soc 162(1):H23–H31

    Article  CAS  Google Scholar 

  25. Kuznetsova E, Petrykin V, Sunde S, Krtil P (2015) Selectivity of nanocrystalline IrO2-based catalysts in parallel chlorine and oxygen evolution. Electrocatalysis 6(2):198–210

    Article  CAS  Google Scholar 

  26. Košević M, Stopic S, Bulan A, Kintrup J, Weber R, Stevanović J, Panić V, Friedrich B (2017) A continuous process for the ultrasonic spray pyrolysis synthesis of RuO2/TiO2 particles and their application as a coating of activated titanium anode. Adv Powder Technol 28(1):43–49

    Article  CAS  Google Scholar 

  27. Yan Z, Li G, Wang J, Zhang Z, Feng Z, Tang M, Zhang R (2016) Electrocatalytic study of IrO2-Ta2O5 coated anodes with pretreated titanium substrates. J Alloy Compd 680(36):60–66

    Article  CAS  Google Scholar 

  28. Dao VD, Larina LL, Lee JK, Jung KD, Huy BT, Choi HS (2015) Graphene-based RuO2 nanohybrid as a highly efficient catalyst for triiodide reduction in dye-sensitized solar cells. Carbon N Y 81(1):710–719

    Article  CAS  Google Scholar 

  29. Zeradjanin AR, La Mantia F, Masa J, Schuhmann W (2012) Utilization of the catalyst layer of dimensionally stable anodes—Interplay of morphology and active surface area. Electrochim Acta 82:408–414

    Article  CAS  Google Scholar 

  30. Xu LK, Scantlebury JD (2003) Microstructure and electrochemical properties of IrO2-Ta2O5-coated titanium anodes. J Electrochem Soc 150(6):B254–B261

    Article  CAS  Google Scholar 

  31. Kyzas GZ, Deliyanni EA, Bikiaris DN, Mitropoulos AC (2018) Graphene composites as dye adsorbents: review. Chem Eng Res Des 129:75–88

    Article  CAS  Google Scholar 

  32. Cho YJ, Il Kim H, Lee S, Choi W (2015) Dual-functional photocatalysis using a ternary hybrid of TiO2 modified with graphene oxide along with Pt and fluoride for H2-producing water treatment. J Catal 330:387–395

    Article  CAS  Google Scholar 

  33. Chen P (2017) Synthesis and photocatalysis of novel magnetic reduced graphene oxide-ZnFe2O4nanocomposites with highly efficient interface-induced effect. J Sol-Gel Sci Technol 82(2):397–406

    Article  CAS  Google Scholar 

  34. Zahed M, sadat Parsamehr P, Tofighy MA, Mohammadi T (2018) Synthesis and functionalization of graphene oxide (GO) for salty water desalination as adsorbent. Chem Eng Res Des 138:358–365

    Article  CAS  Google Scholar 

  35. Jukk K, Kongi N, Rauwel P, Matisen L, Tammeveski K (2016) Platinum nanoparticles supported on nitrogen-doped graphene nanosheets as electrocatalysts for oxygen reduction reaction. Electrocatalysis 7(no. 5):428–440

    Article  CAS  Google Scholar 

  36. Zong J, Jin Q, Huang C (2013) Effect of wetted graphene on the performance of Pt/PPy-graphene electrocatalyst for methanol electrooxidation in acid medium. J Solid State Electrochem 17(5):1339–1348

    Article  CAS  Google Scholar 

  37. Royaei N, Shahrabi T, Yaghoubinezhad Y (2018) The investigation of the electrocatalytic and corrosion behavior of a TiO2–RuO2 anode modified by graphene oxide and reduced graphene oxide nanosheets via a sol–gel method. Catal Sci Technol 8:4957–4974

    Article  CAS  Google Scholar 

  38. Spasojević M, Krstajić N, Spasojević P, Ribić-Zelenović L (2015) Modelling current efficiency in an electrochemical hypochlorite reactor. Chem Eng Res Des 93:591–601

    Article  CAS  Google Scholar 

  39. Arikawa T, Murakami Y, Takasu Y (1998) Simultaneous determination of chlorine and oxygen evolving at RuO2/Ti and RuO2-TiO2/Ti anodes by differential electrochemical mass spectroscopy. J Appl Electrochem 28(5):511–516

    Article  CAS  Google Scholar 

  40. Yue H, Xue L, Chen F (2017) Efficiently electrochemical removal of nitrite contamination with stable RuO2-TiO2/Ti electrodes. Appl Catal B Environ 206:683–691

    Article  CAS  Google Scholar 

  41. Karlsson RKB, Cornell A (2016) Selectivity between Oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem Rev 116(5):2982–3028

    Article  CAS  Google Scholar 

  42. Box GEP, Hunter WG, Hunter JS (2005) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley Ser Probab Math Stat 1(2):528–529

    Google Scholar 

  43. Latchubugata CS, Kondapaneni RV, Patluri KK, Virendra U, Vedantam S (2018) Kinetics and optimization studies using response surface methodology in biodiesel production using heterogeneous catalyst. Chem Eng Res Des 135:129–139

    Article  CAS  Google Scholar 

  44. Aziz MA, Mahmoud TS, Aal AA (2008) Modeling and optimizing of factors affecting erosion-corrosion of AA6063-(TiC/Al2O3) hybrid composites by experimental design method. Mater Sci Eng A 486(1–2):313–320

    Article  CAS  Google Scholar 

  45. Rebollar M, Yates M, Valenzuela MA (2000) Application of experimental design for NOx reduction by Pd-Cu catalysts. Sci Bases Prep Heterog Catal 143:407–414

    Google Scholar 

  46. Rostamiyan Y, Fereidoon A, Rezaeiashtiyani M, Mashhadzadeh AH, Salmankhani A (2015) Experimental and optimizing flexural strength of epoxy-based nanocomposite: effect of using nano silica and nano clay by using response surface design methodology. Mater Des 69:96–104

    Article  CAS  Google Scholar 

  47. Asghari E, Ashassi-Sorkhabi H, Ahangari M, Bagheri R (2016) Optimization of a three-component green corrosion inhibitor mixture for using in cooling water by experimental design. J Mater Eng Perform 25(4):1416–1425

    Article  CAS  Google Scholar 

  48. Montogomery DC (2012) Design and Analysis of Experiments, Sixth. John Wiley & Sons, Inc.

  49. Leng X, Zou J, Xiong X, He H (2015) Electrochemical capacitive behavior of RuO2/graphene composites prepared under various precipitation conditions. J Alloy Compd 653:577–584

    Article  CAS  Google Scholar 

  50. Gao Y, Pu X, Zhang D, Ding G, Shao X, Ma J (2012) Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange. Carbon N Y 50(11):4093–4101

    Article  CAS  Google Scholar 

  51. Panic VV, Nikolic B (2008) Electrocatalytic properties and stability of titanium anodes activated by the inorganic sol-gel procedure. J Serb Chem Soc 73(11):1083–1112

    Article  CAS  Google Scholar 

  52. Shrivastava P, Moats MS (2009) Wet film application techniques and their effects on the stability of RuO2-TiO2 coated titanium anodes. J Appl Electrochem 39(1):107–116

    Article  CAS  Google Scholar 

  53. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977

    Article  CAS  Google Scholar 

  54. Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2(2):128–149

    Article  Google Scholar 

  55. Kosari A, Davoodi A, Moayed MH, Gheshlaghi R (2015) The response surface method as an experimental design technique to explore and model the performance of corrosion inhibitors. Corrosion 71(7):819–827

    Article  CAS  Google Scholar 

  56. Trieu V, Schley B, Natter H, Kintrup J, Bulan A, Hempelmann R (2012) RuO 2-based anodes with tailored surface morphology for improved chlorine electro-activity. Electrochim Acta 78:188–194

    Article  CAS  Google Scholar 

  57. Sjöblom J, Papadakis K, Creaser D, Odenbrand CUI (2005) Use of experimental design in development of a catalyst system. Catal Today 100(3–4):243–248

    Article  CAS  Google Scholar 

  58. Hu JM, Zhang JQ, Cao CN (2004) Oxygen evolution reaction on IrO2-based DSA type electrodes: Kinetics analysis of Tafel lines and EIS. Int J Hydrog Energy 29(8):791–797

    Article  CAS  Google Scholar 

  59. Audichon T, Mayousse E, Morisset S, Morais C, Comminges C, Napporn TW, Kokoh KB (2014) Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. Int J Hydrog Energy 39(30):16785–16796

    Article  CAS  Google Scholar 

  60. Leng X, Liu R, Zou J, Xiong X, He H (2016) One-pot hydrothermal synthesis of graphene-RuO2-TiO2 nanocomposites. Mater Lett 166:175–178

    Article  CAS  Google Scholar 

  61. Cho K, Hoffmann MR (2017) Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: current and energy efficiency. Appl Catal B Environ 202:671–682

    Article  CAS  Google Scholar 

  62. Arikado T, Iwakura C, Tamura H (1978) Some oxide catalysts for the anodic evolution of chlorine: reaction mechanism and catalytic activity. Electrochim Acta 23(1):9–15

    Article  CAS  Google Scholar 

  63. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon N Y 64(1):225–229

    Article  CAS  Google Scholar 

  64. Menzel R, Iruretagoyena D, Wang Y, Bawaked SM, Mokhtar M, Al-Thabaiti SA, Basahel SN, Shaffer MSP (2016) Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels. Fuel 181:531–536

    Article  CAS  Google Scholar 

  65. Panić V, Dekanski A, Mišković-Stanković VB, Nikolić B, Milonjić S (2005) The rol of sol-gel procedure conditions in electrochemical behaviour and corrosion stability of ‎Ti/[RuO2 -TiO2] anodes. Mater Manuf Process 20(1):89–103

    Article  CAS  Google Scholar 

  66. Jovanović VM, Dekanski A, Despotov P, Nikolić BŽ, Atanasoski RT (1992) The roles of the ruthenium concentration profile, the stabilizing component and the substrate on the stability of oxide coatings. J Electroanal Chem 339(1–2):147–165

    Article  Google Scholar 

  67. Yu L, Lei T, Nan B, Jiang Y, He Y, Liu CT (2016) Characteristics of a sintered porous Ni e Cu alloy cathode for hydrogen production in a potassium hydroxide solution. Energy 97:498–505

    Article  CAS  Google Scholar 

  68. Deshmukh PR, Pusawale SN, Jagadale AD, Lokhande CD (2012) Supercapacitive performance of hydrous ruthenium oxide (RuO 2.nH 2O) thin films deposited by SILAR method. J Mater Sci 47(3):1546–1553

    Article  CAS  Google Scholar 

  69. H. M DS, Sanchez C (1987) Hydrolysis Titan alkoxides: Modif Mol precursor acetic Acid 89(1–2):206–216

    Google Scholar 

  70. Li F, Zhang L, Li J, Lin X, Li X, Fang Y (2015) Synthesis of Cu e MoS 2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22

    Article  CAS  Google Scholar 

  71. Mccrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(no. 45):‎16977–‎16987

    Article  CAS  Google Scholar 

  72. Colomer MT, Velasco MJ, Jurado JR, Venezia U, Marta CLS, Debattisti A (2006) Synthesis and thermal evolution of TiO2-RuO2 xerogels. J Sol-Gel Sci Technol 39(3):211–222

    Article  CAS  Google Scholar 

  73. Seddon EA and Seddon KR, The Chemistry of Ruthenium. Elsevier B.V., 1984

  74. Atanasoska LL, Cullen DA, Atanasoski RT (2013) XPS and STEM study of the interface formation between ultra-thin Ru and Ir OER catalyst layers and Perylene Red support whiskers. J Serb Chem Soc 78(no. 12):1993–2005

    Article  CAS  Google Scholar 

  75. Ge Q, Desai S, Neurock M, Kourtakis K (2001) CO adsorption on Pt - Ru surface alloys and on the surface of Pt - Ru bulk alloy J Phys Chem B 105(39):9533–9536

    Article  CAS  Google Scholar 

  76. Gao MY, Yang C, Zhang QB, Yu YW, Hua YX, Li Y, Dong P (2016) Electrochimica Acta Electrochem Fabr Porous Ni-Cu Alloy nanosheets High Catal Act Hydrog Evol 215:609–616

    CAS  Google Scholar 

  77. Malfatti L, Carboni D, Pinna A, Lasio B, Marmiroli B, Innocenzi P (2016) In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray. J Sol-Gel Sci Technol 79(2):295–302

    Article  CAS  Google Scholar 

  78. Ardizzone S, Fregonara G, Trasatti S (1990) ‘Inner’ and ‘outer’ active surface of RuO2 electrodes. Electrochim Acta 35(1):263–267

    Article  CAS  Google Scholar 

  79. Bulan RHA, Kintrup J, Weber R, Chen R, Trieu V, Natter H, Elektrode für die elektrolytische Chlorherstellung DE 10 2010 043 085A, 2010

  80. Arbiol J, Cerdda J, Dezanneau G, Cirera A, Dezanneau JR, Morante G (2002) Effects of Nb doping on the TiO 2 anatase-to-rutile phase transition. J Appl Phys 92(2):853–861

    Article  CAS  Google Scholar 

  81. Zheng XD, Ren F, Cai GX, Hong MQ, Xiao XH, Wu W, Liu YC, Li WQ, Ying JJ, Jiang CZ (2014) Formation of TiO 2 nanorods by ion irradiation. J Appl Phys 115(18):184306

    Article  CAS  Google Scholar 

  82. Ribeiro J, Andrade ARDe (2004) Characterization of RuO2-Ta2O5 coated titanium electrode microstructure, morphology, and electrochemical investigation. J Electrochem Soc 151(10):D106

    Article  CAS  Google Scholar 

  83. Martelli GN, Ornelas R, Faita G (1994) Deactivation mechanisms of oxygen evolving anodes at high current densities. Electrochim Acta 39(11–12):1551–1558

    Article  CAS  Google Scholar 

  84. Leng X, Liu R, Zou J, Xiong X, He H (2016) One-pot hydrothermal synthesis of graphene–RuO2–TiO2 nanocomposites. Mater Lett 166:175–178

    Article  CAS  Google Scholar 

  85. Xiong K, Peng L, Wang Y, Liu L, Deng Z, Li L, Wei Z (2016) In situ growth of RuO2–TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution. J Appl Electrochem 46(8):841–849

    Article  CAS  Google Scholar 

  86. Evdokimov SV (2000) Corrosion behavior of dimensionally stable anodes in chlorine electrolyses. Russ J Electrochem 36(3):259–264

    Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the Iran National Science Foundation (INSF) and the Iran Nanotechnology Initiative Council (INIC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Shahrabi or Y. Yaghoubinezhad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royaei, N., Shahrabi, T. & Yaghoubinezhad, Y. Optimization the selectivity property of graphene oxide modified dimensionally stable anode (DSA) produced by the sol–gel method. J Sol-Gel Sci Technol 90, 547–564 (2019). https://doi.org/10.1007/s10971-019-04966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-04966-9

Keywords

Navigation