Skip to main content
Log in

The effect of Zr loading in Zr/TiO2 prepared by pressurized hot water on its surface, morphological and photocatalytic properties

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Zr/TiO2 anatase photocatalysts with 0.5, 1, 2, 5 and 7.5 mol.% Zr were prepared using pressurized hot water crystallization and their photocatalytic activity was explored in acid orange 7 photodegradation. Parent TiO2 was also prepared and tested. From all tested photocatalysts, 2 mol.% Zr/TiO2 showed the highest photoactivity, and 7.5 mol.% Zr/TiO2 showed the lowest photoactivity. The poor photoactivity of 7.5 mol.% Zr/TiO2 can be explained by the amorphous ZrO2 present in the surface layer (~1–3 μm depth) of TiO2 anatase nanocrystallite agregates which changed the aggregate morphology and shielded the anatase nanocrystallite surface. The type and amount of defects (e.g., oxygen vacancies, lattice defects) did not effect the photoactivity of Zr/TiO2 in AO7 photodegradation. The addition of Zr to TiO2 significantly affects the photocatalyst morphology and the location where amorphous ZrO2 forms. The optimal Zr loading in TiO2 was determined to be 2 mol.%.

Highlights

  • The type and amount of defects do no effect the Zr/TiO2 photoactivity.

  • Amorphous ZrO2 in surface layer of TiO2 agregates shields the anatase nanocrystallites surface.

  • Amorphous ZrO2 in surface layer of TiO2 agregates decreases the Zr/TiO2 anatase photoactivity

  • Zr4+ dopation in TiO2 affects crucially photocatalyst morphology.

  • 2 mol.% Zr/TiO2 shows the highest photoactivity in acid orange 7 degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kyoto Protocol to the United Nations Framework Convention on Climate Change (1997). Kyoto https://unfccc.int/process/the-kyoto-protocol/status-of-ratification

  2. Coronado JM, Fresno F, Hernández-Alonso MD, Portanela R (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer, London

    Book  Google Scholar 

  3. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13(3):169–189

    Article  Google Scholar 

  4. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551

    Article  Google Scholar 

  5. Harandi D, Ahmadi H, Achachluei MM (2016) Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. Int Biodeterior Biodegrad 108:142–148

    Article  Google Scholar 

  6. Znaidi L (2010) Sol-gel-deposited ZnO thin films: a review. Mater Sci Eng B Adv 174(1–3):18–30

    Article  Google Scholar 

  7. Khedr TM, El-sheikh SM, Hakki A, Ismail AA (2017) Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. J Photochem Photobiol A Chem 346:530–540

    Article  Google Scholar 

  8. Xing Z, Zhang J, Cui J, Yin J, Zhao T, Kuang J, Xiu Z, Wan N, Zhou W (2018) Recent advances in floating TiO2 -based photocatalysts for environmental application. Appl Catal B Environ 225:452–467

    Article  Google Scholar 

  9. Mahy JG, Lambert SD, Léonard GLM, Zubiaur A, Olu P-Y, Mahmoud A, Boschini F, Heinrichs B (2016) Towards a large scale aqueous sol-gel synthesis of doped TiO2: study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J Photochem Photobiol 329:189–202

    Article  Google Scholar 

  10. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4 -based photocatalysts. Appl Surf Sci 391:72–123

    Article  Google Scholar 

  11. Kharlamov A, Bondarenko M, Kharlamova G, Gubareni N (2016) Features of the synthesis of carbon nitride oxide (g-C3N4) at urea pyrolysis. Diam Relat Mater 66:16–22

    Article  Google Scholar 

  12. Xiao H, Wang W, Liu G, Chen Z, Lv K, Zhu J (2015) Photocatalytic performances of g-C3N4 based catalysts for RhB degradation: effect of preparation conditions. Appl Surf Sci 358:313–318

    Article  Google Scholar 

  13. Ma J, Wang C, He H (2016) Enhanced photocatalytic oxidation of NO over g-C3N4 -TiO2 under UV and visible light. Appl Catal B Environ 184:28–34

    Article  Google Scholar 

  14. Zhang J, Xu LJ, Zhu ZQ, Liu QJ (2015) Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Mater Res Bull 70:358–364

    Article  Google Scholar 

  15. Naraginti S, Thejaswini TVL, Prabhakaran D, Sivakumar A, Satyanarayana VSV, Prasad ASA (2015) Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light. Spectrochim Acta A 149:571–579

    Article  Google Scholar 

  16. Matějová L, Šihor M, Brunátová T, Ambrožová N, Reli M, Čapek L, Obalová L, Kočí K (2015) Microstructure-performance study of cerium-doped TiO2 prepared by using pressurized fluids in photocatalytic mitigation of N2O Res Chem Intermed 41:9217–9231

    Article  Google Scholar 

  17. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2010) Electronic band structure of zirconia and hafnia polymorphs from the GW perspective Phys Rev B 81:085119

    Article  Google Scholar 

  18. Kambur A, Pozan GS, Boz I (2012) Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles. Appl Catal B Environ 115:149–158

    Article  Google Scholar 

  19. Lukáč J, Klementová M, Bezdička P, Bakardjieva S, Šubrt J, Szatmáry L, Bastl Z, Jirkovský J (2007) Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol. Appl Catal B Environ 74(1-2):83–91

    Article  Google Scholar 

  20. Matějová L, Kočí K, Reli M, Čapek L, Matějka V, Šolcová O, Obalová L (2013) On sol-gel derived Au-enriched TiO2 and TiO2-ZrO2 photocatalysts and their investigation in photocatalytic reduction of carbon dioxide. Appl Surf Sci 285:688–696

    Article  Google Scholar 

  21. Zou H, Lin YS (2004) Structural and surface chemical properties of sol-gel derived TiO2-ZrO2 oxides. Appl Catal A Gen 265(1):35–42

    Article  Google Scholar 

  22. Choina J, Fischer C, Flechsig GU, Kosslick H, Tuan VA, Tuyen ND, Tuyen NA, Schulz A (2014) Photocatalytic properties of Zr-doped titania in the degradation of the pharmaceutical ibuprofen. J Photoch Photobio A 274:108–116

    Article  Google Scholar 

  23. Gao BF, Lim TM, Subagio DP, Lim TT (2010) Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A. Appl Catal A Gen 375(1):107–115

    Article  Google Scholar 

  24. Inturi SNR, Boningari T, Suidan M, Smirniotis PG (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B Environ 144:333–342

    Article  Google Scholar 

  25. Naraginti S, Stephen FB, Radhakrishnan A, Sivakumar A (2015) Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochim Acta A 135:814–819

    Article  Google Scholar 

  26. Mattsson A, Lejon C, Štengl V, Bakardjieva S, Opluštil F, Andersson PO, Österlund L (2009) Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles. Appl Catal B Environ 92(3-4):401–410

    Article  Google Scholar 

  27. Mattsson A, Lejon C, Bakardjieva S, Štengl V, Osterlund L (2013) Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles. J Solid State Chem 199:212–223

    Article  Google Scholar 

  28. Cha JA, An SH, Jang HD, Kim CS, Song DK, Kim TO (2012) Synthesis and photocatalytic activity of N-doped TiO2/ZrO2 visible-light photocatalysts. Adv Powder Technol 23(6):717–723

    Article  Google Scholar 

  29. Feng HJ, Zhang MH, Yu LYE (2012) Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO2. Appl Catal A Gen 413:238–244

    Article  Google Scholar 

  30. Tian G, Pan K, Fu H, Jing L, Zhou W (2009) Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation. J Hazard Mater 166(2-3):939–944

    Article  Google Scholar 

  31. Kim CS, Shin JW, An SH, Jang HD, Kim TO (2012) Photodegradation of volatile organic compounds using zirconium-doped TiO2/SiO2 visible light photocatalysts. Chem Eng J 204:40–47

    Article  Google Scholar 

  32. McManamon C, Holmes JD, Morris MA (2011) Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders. J Hazard Mater 193:120–127

    Article  Google Scholar 

  33. Fresno F, Hernandez-Alonso MD, Tudela D, Coronado JM, Soria J (2008) Photocatalytic degradation of toluene over doped and coupled (Ti,M)O2 (M = Sn or Zr) nanocrystalline oxides: influence of the heteroatom distribution on deactivation. Appl Catal B Environ 84(3-4):598–606

    Article  Google Scholar 

  34. Das M, Bhattacharyya KG (2013) Oxidative degradation of orange II dye in water with raw and acid-treated ZnO, and MnO2 CLEAN Soil Air Water 41:984–991

    Google Scholar 

  35. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - a review. Appl Catal B Environ 49(1):1–14

    Article  Google Scholar 

  36. Lang J, Matějová L, Troppová I, Čapek L, Endres J, Daniš S (2017) Novel synthesis of ZrxTi1-xOn mixed oxides using titanyl sulphate and pressurized hot and supercritical fluids, and their photocatalytic comparison with sol-gel prepared equivalents. Mater Res Bull 95:95–103

    Article  Google Scholar 

  37. Lang J, Matějová L, Matěj Z, Čapek L, Svoboda L (2018) Crystallization of Zr0.1Ti0.9On mixed oxide by pressurized hot water and its effect on microstructural properties and photoactivity J Supercrit Fluid 141:39–48

    Article  Google Scholar 

  38. Matějová L, Polách L, Lang J, Šihor M, Reli M, Brunátová T, Daniš S, Peikertová P, Troppová I, Kočí K (2017) Novel TiO2 prepared from titanyl sulphate by using pressurized water processing and its photocatalytic activity evaluation. Mater Res Bull 95:30–46

    Article  Google Scholar 

  39. Matěj Z, Kužel R, Nichtová L (2010) XRD total pattern fitting applied to study of microstructure of TiO2 films. Powder Diffr 25(2):125–131

    Article  Google Scholar 

  40. Zdeněk M (2014) Refining bimodal microstructure of materials with MSTRUCT. Powder Diffr 29(S2):35–41

    Article  Google Scholar 

  41. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, New York

  42. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  43. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(Sep1):751–767

    Article  Google Scholar 

  44. Li Z, Wang W, Greenham NC, McNeill CR (2014) Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells. Phys Chem Chem Phys 16(47):25684–25693

    Article  Google Scholar 

  45. Tang H, Prasad K, Sanjinès R, Schmid PE, Lévy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75(4):2042–2047

    Article  Google Scholar 

  46. Abazović ND, Čomor MI, Dramićanin MD, Jovanović DJ, Ahrenkiel SP, Nedeljković JM (2006) Photoluminescence of anatase and rutile TiO2 particles. J Phys Chem B 110(50):25366–25370

    Article  Google Scholar 

  47. Sabry RS, Al-Haidarie YK, Kudhier AM (2016) Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by sol–gel method. J Sol Gel Sci Technol 78(2):299–306

    Article  Google Scholar 

  48. Liu B, Wen L, Zhao X (2007) The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering. Mater Chem Phys 106(2-3):350–353

    Article  Google Scholar 

  49. Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V, Baran J (2014) Laser-excited excitonic luminescence of nanocrystalline TiO2 powder. Ukr J Phys 59(3):246–253

    Article  Google Scholar 

  50. Fu C, Gong Y, Wu Y, Liu J, Zhang Z, Li C, Niu L (2016) Photocatalytic enhancement of TiO2 by B and Zr co-doping and modulation of microstructure. Appl Surf Sci 379:83–90

    Article  Google Scholar 

  51. Reli M, Edelmannová M, Šihor M, Praus P, Svoboda L, Mamulová KK, Otoupalíková H, Čapek L, Hospodková A, Obalová L, Kočí K (2015) Photocatalytic H2 generation from aqueous ammonia solution using ZnO photocatalysts prepared by different methods. Int J Hydrog Energy 40(27):8530–8538

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported from ERDF “Institute of Environmental Technology – Excellent Research” (No. CZ.02.1.01/0.0/0.0/16_019/0000853). Experimental results were accomplished using Large Research Infrastructure ENREGAT supported by the Ministry of Education, Youth and Sports of the Czech Republic under project No. LM2018098. The financial support of the Grant Agency of the Czech Republic (project No. 14-23274S) is also gratefully acknowledged. XPS measurements were carried out with the equipment purchased thanks to the financial support of the NanoEnviCZ supported by the Ministry of Education, Youth and Sports of the Czech Republic under project No. LM2015073. The authors also thank Dr. Martin Reli from IET VŠB-TUO for his guidance in photoelectrochemical measurements and advices with spectra interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Matějová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, J., Matějová, L., Matěj, Z. et al. The effect of Zr loading in Zr/TiO2 prepared by pressurized hot water on its surface, morphological and photocatalytic properties. J Sol-Gel Sci Technol 90, 369–379 (2019). https://doi.org/10.1007/s10971-019-04956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-04956-x

Keywords

Navigation