Skip to main content
Log in

Microstructure-performance study of cerium-doped TiO2 prepared by using pressurized fluids in photocatalytic mitigation of N2O

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Parent TiO2 and cerium-doped TiO2 photocatalysts with various Ce molar loadings (Ce0.05Ti0.95O2, Ce0.30Ti0.70O2) were prepared unconventionally using the sol–gel process controlled within the reverse micelles and the processing by pressurized hot fluids as an alternative to standard calcination. Purity, textural, micro/structural and optical properties of prepared photocatalysts were characterized by organic elementary analysis, nitrogen physisorption, powder X-ray diffraction, and DRS UV–Vis spectroscopy. The activity of developed cerium-doped TiO2 catalysts was investigated in the photocatalytic decomposition of N2O for the first time. It was revealed that photocatalysts processed by pressurized hot fluids show significantly improved textural properties and different crystallinity compared to their calcined analogues. Ce loading as well as the processing procedure had a key effect on the crystallization of CexTi1−xO2 materials. The maximum N2O conversion (77 % after 20 h of illumination) in inert gas was reached over the Ce0.05Ti0.95O2 photocatalyst and it can be attributed to the simultaneous N2O photocatalytic decomposition and N2O photolysis. Reaction kinetics of N2O photocatalytic decomposition was described well by the pseudo-first-rate law. The lower photocatalytic activity of the Ce0.30Ti0.70O2 photocatalyst compared to the Ce0.05Ti0.95O2 photocatalyst can be correlated with two factors; the lower disorder within anatase crystal structure and possible presence of some cerium-containing amorphous phase (e.g., CeO2 or CeTi2O6), which can partially block the surface active sites within the anatase crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Richter, S. Caillol, J. Photochem. Photobiol. C 12, 1 (2011)

    Article  Google Scholar 

  2. K. Ebitani, M. Morokuma, J.-H. Kim, A. Morikawa, J. Catal. 141, 725 (1993)

    Article  CAS  Google Scholar 

  3. K. Ebitani, M. Morokuma, J.-H. Kim, A. Morikawa, Bull. Chem. Soc. Jpn 66, 3811 (1993)

    Article  CAS  Google Scholar 

  4. K. Ebitani, M. Morokuma, J.-H. Kim, A. Morikawa, J. Chem. Soc., Faraday Trans. 90, 377 (1994)

    Article  CAS  Google Scholar 

  5. K. Ebitani, Y. Hirano, A. Morikawa, J. Catal. 157, 262 (1995)

    Article  CAS  Google Scholar 

  6. M. Anpo, M. Matsuoka, K. Hano, H. Mishima, T. Ono, H. Yamashita, Korean J. Chem. Eng. 14, 498 (1997)

    Article  CAS  Google Scholar 

  7. M. Matsuoka, W.-S. Ju, H. Yamashita, M. Anpo, J. Photochem. Photobiol. A 160, 43 (2003)

    Article  CAS  Google Scholar 

  8. M. Matsuoka, W.-S. Ju, K. Takahashi, H. Yamashita, M. Anpo, J. Phys. Chem. 104, 4911 (2000)

    Article  CAS  Google Scholar 

  9. W.-S. Ju, M. Matsuoka, M. Anpo, Catal. Lett. 71, 91 (2001)

    Article  CAS  Google Scholar 

  10. M. Matsuoka, W.S. Ju, M. Anpo, K. Chem, Lett. 29, 626 (2000)

    Google Scholar 

  11. M. Matsuoka, W.S. Ju, H. Yamashita, M. Anpo, J. Synchrotron Rad. 8, 613 (2001)

    Article  CAS  Google Scholar 

  12. W.S. Ju, M. Matsuoka, K. Iino, H. Yamashita, M. Anpo, J. Phys. Chem. 108, 2128 (2004)

    Article  CAS  Google Scholar 

  13. H. Chen, M. Matsuoka, J. Zhang, M. Anpo, J. Phys. Chem. B 110, 4263 (2006)

    Article  CAS  Google Scholar 

  14. M. Matsuoka, M. Anpo, J. Photochem. Photobiol. C 3, 225 (2003)

    Article  CAS  Google Scholar 

  15. T. Sano, N. Negishi, D. Mas, K. Takeuchi, J. Catal. 194, 71 (2000)

    Article  CAS  Google Scholar 

  16. K. Kočí, S. Krejčíková, O. Šolcová, L. Obalová, Catal. Today 191, 134 (2012)

    Article  Google Scholar 

  17. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E-Sutter, M. Batzill, Sci. Rep. 4, 1 (2014)

    Article  Google Scholar 

  18. D.O. Scanlon, ChW Dunnill, J. Buckeringe, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12, 798 (2013)

    Article  CAS  Google Scholar 

  19. M.A. Henderson, J. Szanyl, C.H.F. Peden, Catal. Today 85, 251 (2003)

    Article  CAS  Google Scholar 

  20. V. Štengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114, 217 (2009)

    Article  Google Scholar 

  21. A. Rapsomanikis, A. Apostolopoulou, E. Stathatos, P. Lianos, J. Photochem. Photobiol. A: Chem 280, 46 (2014)

    Article  CAS  Google Scholar 

  22. G. Li, D. Zhang, J.C. Yu, Phys. Chem. Chem. Phys. 11, 3775 (2009)

    Article  CAS  Google Scholar 

  23. M. Nasir, S. Bagwasi, Y. Jiao, F. Chen, B. Tian, J. Zhang, Chem. Eng. J. 236, 388 (2014)

    Article  CAS  Google Scholar 

  24. L. Matějová, K. Kočí, M. Reli, L. Čapek, A. Hospodková, P. Peikertová, Z. Matěj, L. Obalová, A. Wach, P. Kustrowski, A. Kotarba, Appl. Catal. B: Environ 152–153, 172 (2014)

    Article  Google Scholar 

  25. L. Matějová, V. Valeš, R. Fajgar, Z. Matěj, V. Holý, O. Šolcová, J. Solid State Chem. 198, 485 (2013)

    Article  Google Scholar 

  26. L. Matějová, T. Cajthaml, Z. Matěj, O. Benada, P. Klusoň, O. Šolcová, J. Supercrit. Fluids 52, 215 (2010)

    Article  Google Scholar 

  27. L. Matějová, Z. Matěj, R. Fajgar, T. Cajthaml, O. Šolcová, Mater. Res. Bullet. 47, 3573 (2012)

    Article  Google Scholar 

  28. S.J. Gregg, K.S.W. Sing, Adsorption, surface area, and porosity (Academic Press, New York, 1982)

    Google Scholar 

  29. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

  30. J.B. DeBoer, B.C. Lippens, B.G. Linsen, J.C.P. Broekhoff, A.V.D. Heuvel, T.J. Osinga, J. Colloid Interface Sci. 21, 405 (1966)

    Article  CAS  Google Scholar 

  31. P. Schneider, Appl. Catal. A 129, 157 (1995)

    Article  CAS  Google Scholar 

  32. A. Lecloux, J.P. Pirard, J. Colloid Interface Sci. 70, 265 (1979)

    Article  CAS  Google Scholar 

  33. E.P. Barret, L.G. Joyner, P.B. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  Google Scholar 

  34. NOVAwin Data Processing—Quantachrome Software, Quantachrome, USA

  35. P. Scardi, M. Leoni, Acta Crystallogr. Sect. A: Found. Crystallogr. 58, 190 (2002)

    Article  CAS  Google Scholar 

  36. Z. Matěj, R. Kužel, MStruct-program/library for MicroStructure analysis by powder diffraction. http://www.xray.cz/mstruct/ 2009

  37. Z. Matej, R. Kuzel, L. Nichtova, Powder Diffr. 25, 125 (2010)

    Article  CAS  Google Scholar 

  38. Z. Matěj, L. Matějová, R. Kužel, Powder Diffr. 28, 161 (2013)

    Article  Google Scholar 

  39. K. Kočí, L. Matějová, O. Kozák, L. Čapek, V. Valeš, M. Reli, P. Praus, K. Šafářová, A. Kotarba, L. Obalová, Appl. Catal. B 158–159, 410 (2014)

    Google Scholar 

  40. H.P. Klug, L.E. Alexander, X-Ray diffraction procedures: for polycrystalline and amorphous materials (Wiley, New York, 1974)

    Google Scholar 

  41. J. Tauc, A. Menth, J. Non-Cryst. Solids 569, 8 (1972)

    Google Scholar 

  42. K. Kočí, M. Reli, O. Kozák, Z. Lacný, D. Plachá, P. Praus, L. Obalová, Catal. Today 176, 212 (2011)

    Article  Google Scholar 

  43. M.H. Zhou, J.G. Yu, B. Cheng, H.G. Yu, Mater. Chem. Phys. 93, 159 (2005)

    Article  CAS  Google Scholar 

  44. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)

    Article  CAS  Google Scholar 

  45. K. Tanaka, M.F.V. Capule, T. Hisanaga, Chem. Phys. Lett. 187, 73 (1991)

    Article  CAS  Google Scholar 

  46. J. Xiao, T. Peng, R. Li, Z. Peng, Ch. Yan, J. Solid State Chem. 179, 1161 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Grant Agency of the Czech Republic (Project No. 14-23274S) and the EU project “ENET” (No. CZ.1.05/2.1.00/03.0069) is gratefully acknowledged. The authors are also thankful for the support of the project SP2014/48 and “National Feasibility Program I” (Project LO1208 “TEWEP”) from Ministry of Education, Youth and Sports of the Czech Republic. Martin Reli acknowledges the support in the framework of the project “New creative teams in priorities of scientific research”, Reg. No. CZ.1.07/2.3.00/30.0055, supported by Operational Programme Education for Competitiveness and co-financed by the European Social Fund and the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Kočí.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matějová, L., Šihor, M., Brunátová, T. et al. Microstructure-performance study of cerium-doped TiO2 prepared by using pressurized fluids in photocatalytic mitigation of N2O. Res Chem Intermed 41, 9217–9231 (2015). https://doi.org/10.1007/s11164-015-1985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1985-6

Keywords

Navigation