Skip to main content
Log in

Synthesis of aluminophosphate xerogels by non-hydrolytic sol–gel condensation of EtAlCl2 with trialkylphosphates

  • Original Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have investigated the preparation of high-surface-area mesoporous aluminophosphates by non-hydrolytic sol–gel method based on reactions of EtAlCl2 with trialkylesters of phosphoric acid (OP(OR)3, R = Me, Et, iPr, nBu, in dry organic solvents. The condensations proceed by alkylchloride elimination. Various reaction and calcination conditions were examined. Porosity is obtained after calcination by removal of organic residual groups. This thermal processing at 300 °C of as-synthesized precursor gels leads to amorphous aluminophosphate xerogels with surface areas of 400–500 m2 g–1 provided by small mesopores (2–8 nm). Changes in the coordination environment of aluminium from six- to four-coordinate are evidenced by shift of 27Al MAS NMR resonances.

Highlights

  • Dichloroethylalane reacts with trialkylphosphates by alkylchloride elimination.

  • Aluminophosphate gels are obtained from the non-hydrolytic sol-gel technique.

  • Thermal processing at 300 °C leads to amorphous xerogels with surface areas of 400–500 m2 g–1.

  • Porosity is composed of small mesopores (2–8 nm).

  • Templating with Pluronic P123 significantly improves pore size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J Am Chem Soc 104:1146–1147. https://doi.org/10.1021/ja00368a062

    Article  Google Scholar 

  2. Bennett JM, Cohen JM, Artioli G, Pluth JJ, Smith JV (1985) Crystal Structure of AlPO4-21, a Framework aluminophosphate containing tetrahedral phosphorus and both tetrahedral and trigonal-bipyramidal aluminum in 3-, 4-, 5-, and 8-rings. Inorg Chem 24:188–193. https://doi.org/10.1021/ic00196a014‎

    Article  Google Scholar 

  3. Kirchner RM, Bennett JM (1994) The structure of calcined AlPO4-41: A new framework topology containing 10-ring pores. Zeolites 14:523–528. https://doi.org/10.1016/0144-2449(94)90185-6

    Article  Google Scholar 

  4. Zahendi-Niaki MH, Joshi PN, Kaliaguine J (1996) Synthesis and characterization of AlPO-36, the missing end-member of ATS structure. Chem Commun 1373–1374 https://doi.org/10.1039/CC9960001373

  5. Naydenov V, Tosheva V, Antzutkin AN, Sterte J (2005) Meso/macroporous AlPO-5 spherical macrostructures tailored by resin templating. Micro Mesopor Mat 78:181–188. https://doi.org/10.1016/j.micromeso.2004.10.008

    Article  Google Scholar 

  6. Middelkoop V, Jacques SDM, O´Brien MG, Beale AM, Barnes P (2008) Hydrothermal/autoclave synthesis of AlPO-5: a prototype space/time study of crystallisation gradients. J Mater Sci 43:2222–2228. https://doi.org/10.1007/s10853-007-2038-3

    Article  Google Scholar 

  7. Vaughan DEW, Yennawar HP, Perrotta AJ (2006) Synthesis and structure of an aluminophosphate built from 3-rings. Chem Mater 18:3611–3615. https://doi.org/10.1021/cm0521572

    Article  Google Scholar 

  8. Afeworki M, Dorset DL, Kennedy GJ, Strohmaier KG (2006) Synthesis and characterization of a new microporous material. 1. structure of aluminophosphate EMM-3. Chem Mater 18:1697–1704. https://doi.org/10.1021/cm052174r

    Article  Google Scholar 

  9. Chen B, Huang Y (2011) Formation of microporous material AlPO4-18 under dry-gel conversion conditions. Micro Mesopor Mat 143:14–21. https://doi.org/10.1016/j.micromeso.2011.02.002

    Article  Google Scholar 

  10. Kodaira T, Nabata A, Ikeda T (2012) A new aluminophosphate phase, AlPO-NS, with a bellows-like morphology obtained from prolonged hydrothermal process or increased pH value of initial solution for synthesizing AlPO4-5. Micro Mesopor Mat 162:31–35. https://doi.org/10.1016/j.micromeso.2012.06.003

    Article  Google Scholar 

  11. Flanigen EM, Lok BM, Patton RL, Wilson ST (1986) Aluminophosphate molecular sieves and the periodic table. Pure & Appl Chem 58:1351–1358. https://doi.org/10.1351/pac198658101351

    Article  Google Scholar 

  12. Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768. https://doi.org/10.1021/cm00022a005

    Article  Google Scholar 

  13. Richardson JW, Vogt ETC (1992) Structure determination and rietveld refinement of aluminophosphate molecular sieve AIPO4-8. Zeolites 12:13–19. https://doi.org/10.1016/0144-2449(92)90003-8

    Article  Google Scholar 

  14. Deroche I, Gaberova L, Maurin G, Llewellyn P, Castro M, Wright P (2008) Adsorption of carbon dioxide in SAPO STA-7 and AlPO-18: Grand Canonical Monte Carlo simulations and microcalorimetry measurements. Adsorption 14:207–213. https://doi.org/10.1007/s10450-007-9098-1

    Article  Google Scholar 

  15. Carreon ML, Li S, Carreon MA (2012) AlPO-18 membranes for CO2/CH4 separation. Chem Commun 48:2310–2312. https://doi.org/10.1039/c2cc17249f

    Article  Google Scholar 

  16. Shutilov RA, Grenev IV, Kikhtyanin OV, Gavrilov VY (2012) Adsorption of molecular hydrogen on aluminophosphate zeolites at 77 K. Kinet Catal 53:137–144. https://doi.org/10.1134/S0023158412010119

    Article  Google Scholar 

  17. Arieli D, Vaughan DEW, Strohmaier KG, Thomann H, Bernardo M, Goldfarb D (1999) Studies of Fe(III) incorporated into AlPO4-20 by X- and W-band EPR spectroscopies. Magn Reson Chem 37:43–54. 0749–1581/99/SI0043–12

    Article  Google Scholar 

  18. Frunza L, Pelgrims J, Leeman H, Van Der Voort P, Vansant EF, Schoonheydt RA, Weckhuysen BM (2001) Incorporation of transition metal ions in aluminophosphate molecular sieves with AST structure. J Phys Chem B 105:2677–2686. https://doi.org/10.1021/jp002403r

    Article  Google Scholar 

  19. Zhao R, Wang Y, Guo Y, Guo Y, Liu X, Zhang Z, Wang Y, Zhan W, Lu G (2006) A novel Ce/AlPO-5 catalyst for solvent-free liquid phase oxidation of cyclohexane by oxygen. Green Chem 8:459–466. https://doi.org/10.1039/b517656e

    Article  Google Scholar 

  20. Franklin IL, Beale AM, Sankar G (2003) On the activity, longevity and recyclability of Mn(II) and Co(II) substituted AlPO-18 catalysts for the conversion of methanol to light olefins. Catal Today 81:623–629. https://doi.org/10.1016/S0920-5861(03)00160-3

    Article  Google Scholar 

  21. Zhao X, Sun Z, Zhu Z, Li A, Li G, Wang X (2013) Higher alcohol synthesis over Rh catalysts: conditioning of Rh/N-CNTs by Co and Mn entrapped in the support. Catal Lett 143:657–665. https://doi.org/10.1007/s10562-013-1027-1

    Article  Google Scholar 

  22. Raboin L, Yano J, Tilley D (2012) Epoxidation catalysts derived from introduction of titanium centers onto the surface of mesoporous aluminophosphate: Comparisons with analogous catalysts based on mesoporous silica. J Catal 285:168–176. https://doi.org/10.1016/j.jcat.2011.09.023

    Article  Google Scholar 

  23. Danjo Y, Kikuchi I, Ino Y, Ohshima M, Kurokawa H, Miura H (2012) Support effect of Pd/AlPO4 catalyst in hydrogen storage of organic hydride method in the presence of CO. Reac Kinet Mech. Cat 105:381–389. https://doi.org/10.1007/s11144-011-0395-z

    Google Scholar 

  24. Lertjiamratn K, Praserthdam P, Arai H, Panpranot J (2010) Modification of acid properties and catalytic properties of AlPO4 by hydrothermal pretreatment for methanol dehydration to dimethyl ether. Appl Catal A 2010 378:119–123. https://doi.org/10.1016/j.apcata.2010.02.013

    Article  Google Scholar 

  25. Yuan H, Liu X, Ren J, Shen L (2013) Surface acidity of aluminum phosphate and its catalytic performance in benzene alkylation with long chain olefin. Chin J Chem Eng 21:627–632. https://doi.org/10.1016/S1004-9541(13)60498-X

    Article  Google Scholar 

  26. Fitzgerald JJ, Piedra G, Dec SF, Seger M, Maciel GE (1997) Dehydration studies of a high-surface-area alumina (pseudo-boehmite) using solid-state 1H and 27Al NMR. J Am Chem Soc 119:7832–7842. https://doi.org/10.1021/ja970788u

    Article  Google Scholar 

  27. Pinkas J, Wessel H, Yang Y, Montero ML, Noltemeyer M, Fröba M, Roesky HW (1998) Reactions of phosphoric acid triesters with aluminum and gallium amides. Inorg Chem 1998 37:2450–2457. https://doi.org/10.1021/ic9713036

    Google Scholar 

  28. Mason MR, Matthews RM, Mashuta MS, Richardson JF (1996) Organic-soluble cyclic and cage alkylaluminophosphates: X-ray crystal structure of [(tBu)2Al(μ2-O)2P(OSiMe3)2]2. Inorg Chem 35:5756–5757. https://doi.org/10.1021/ic960619v

    Article  Google Scholar 

  29. Corriu RJP, Leclercq D, Lefévre P, Mutin PH, Vioux A (1992) Preparation of monolithic metal oxide gels by a non-hydrolytic sol–gel process. J Mater Chem 2:673–674. https://doi.org/10.1039/jm9920200673

    Article  Google Scholar 

  30. Andrianainarivelo M, Corriu R, Leclercq D, Mutin PH, Vioux A (1996) Mixed oxides SiO2–ZrO2 and SiO2–TiO2 by a non-hydrolytic sol–gel route. J Mater Chem 6:1665–1671. https://doi.org/10.1039/JM9960601665

    Article  Google Scholar 

  31. Aboulaich A, Boury B, Mutin PH (2010) Reactive and organosoluble anatase nanoparticles by a surfactant-free nonhydrolytic synthesis. Chem Mater 22:4519–4521. https://doi.org/10.1021/cm101191a

    Article  Google Scholar 

  32. Aboulaich A, Boury B, Mutin PH (2011) Reactive and organosoluble SnO2 nanoparticles by a surfactant‐free non‐hydrolytic sol–gel route. Eur J Inorg Chem 3644–3649. https://doi.org/10.1002/ejic.201100391

  33. Bouchmella K, Mutin PH, Stoyanova M, Poleunis C, Eloy P, Rodemerck U, Gaigneaux EM, Debecker DP (2013) Olefin metathesis with mesoporous rhenium–silicium–aluminum mixed oxides obtained via a one-step non-hydrolytic sol–gel route. J Catal 301:233–241. https://doi.org/10.1016/j.jcat.2013.02.016

    Article  Google Scholar 

  34. Moravec Z, Sluka R, Necas M, Jancik V, Pinkas J (2009) A structurally diverse series of aluminum chloride alkoxides [ClxAl(μ-OR)y]n (R=nBu, cHex, Ph, 2,4-tBu2C6H3). Inorg Chem 48:8106–8114. https://doi.org/10.1021/ic802251g

    Article  Google Scholar 

  35. Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Mineral 39:92–96. ISSN 1945-3027

    Google Scholar 

  36. Pinkas J, Chakraborty D, Yang Y, Murugavel R, Noltemeyer M, Roesky HW (1999) Reactions of trialkyl phosphates with trialkyls of aluminum and gallium: New route to alumino- and gallophosphate compounds via dealkylsilylation. Organometallics 18:523–528. https://doi.org/10.1021/om9806702

    Article  Google Scholar 

  37. Daasch LW, Smith DC (1951) Infrared spectra of phosphorus compounds. Anal Chem 23:853–868. https://doi.org/10.1021/ac60054a008

    Article  Google Scholar 

  38. Corbridge DEC (1969) In: Grayson M, Griffith EJ (ed) Phosphorus Compounds, John Wiley, New York

  39. Li HX, Davis ME (1993) Further studies on aluminophosphate molecular sieves. Part 1.—AlPO4-H2: a hydrated aluminophosphate molecular sieve. J Chem Soc Faraday Trans 89:951–956. https://doi.org/10.1039/FT9938900951

    Article  Google Scholar 

  40. George L, Viswanatham KS, Singh S (1997) Ab initio study of trimethyl phosphate: conformational analysis, dipole moments, vibrational frequencies, and barriers for conformer interconversion. J Phys Chem 101:2459–2464. https://doi.org/10.1021/jp9625570

    Article  Google Scholar 

  41. Jelinek R, Chmelka BF, Wu Y, Grandinetti PJ, Pines A, Barrie PJ, Klinowski J (1991) Study of the aluminophosphates AlPO4-21 and A1PO4-25 by 27Al Double-Rotation NMR. J Am Chem Soc 113:4097–4101. 0002–7863/91/1513–4097

    Article  Google Scholar 

  42. Blackwell CS, Patton RL (1988) Solid-state NMR of silicoaluminophosphate molecular sieves and aluminophosphate materials. J Phys Chem 92:3969–3970. https://doi.org/10.1021/j100324a055

    Article  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project Mobility FRANCE 7AMB17FR050 and CEITEC 2020 (LQ1601). ZM thanks to Postdoc II CZ.1.07/2.3.00/30.0037 for financial assistance. Authors thank to L. Simonikova and Dr. K. Novotny for ICP-OES analyses, T. Samoril for TEM analyses, Dr. P. Roupcova for XRD and Dr. P. Bezdicka for HT XRD measurements and M. Babiak for the single-crystal X-ray diffraction analyses. CIISB research infrastructure project LM2015043 funded by the MEYS CR is gratefully acknowledged for the financial support of the measurements at the CEITEC MU CF X-ray Diffraction and Bio-SAXS, the CF Cryo-electron Microscopy and Tomography.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiri Pinkas or Zdenek Moravec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podhorsky, J., Chyba, J., Pinkas, J. et al. Synthesis of aluminophosphate xerogels by non-hydrolytic sol–gel condensation of EtAlCl2 with trialkylphosphates. J Sol-Gel Sci Technol 91, 385–398 (2019). https://doi.org/10.1007/s10971-019-04953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-04953-0

Keywords

Navigation