Skip to main content
Log in

Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of Yb and X co-doped BiFeO3 (X = Nb, Mn, Mo) and undoped BiFeO3 polycrystalline ceramics were prepared by sol-gel method. The X-ray diffraction pattern confirmed the rhombohedral perovskite structure for all the ceramics. Reitveld refinement results bring out the impact of doping on the structural distortion. The Transmission Electron Micrograph observation reveals the nanostructure of the doped samples. Well saturated ferromagnetic hysteresis curves were obtained for the doped samples in contrary to undoped BiFeO3 and this is attributed to the distortion of spin spiral structure. The doped ceramics exhibited improved ferroelectric parameters and very low leakage current density of the order of 10−9 to 10−7 A/cm2, which is remarkably lower than that of undoped BFO. Remarkable dielectric properties were exhibited for the doped samples. An abrupt noticeable enhancement of magetoelectric coupling for the doped samples in comparison with the undoped BiFeO3 has been demonstrated in our work.

The left figure depicts the ferromagnetic character and the right figure depicts the ferroelectric behavior of (Yb, Nb), (Yb, Mn) and (Yb, Mo) doped BiFeO3 multiferroic

Highlights

  • Novel (Yb, X) doped BFO (X = Nb, Mn, Mo) multiferroic materials were synthesized.

  • All the doped samples exhibit significantly enhanced magnetic, ferroelectric and dielectric properties.

  • Leakage current of the doped BFO is very low compared to that of undoped BFO.

  • Remarkably improved magnetoelectric coupling is shown by the doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003) Nat Lond 426:55

    Article  Google Scholar 

  2. Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW (2004) Nat Lond 429:392

    Article  Google Scholar 

  3. Spaldin NA, Feibig M (2005) Science 309:391

    Article  Google Scholar 

  4. Erenstein W, Mathur ND, Scott JF (2006) Nat Lond 442:759

    Article  Google Scholar 

  5. Feibig M, Lottermoser Th, Frohlich D, Goltsev AV, Pisarev RV (2002) Nat Lond 419:818

    Article  Google Scholar 

  6. Kubel F, Schmid H (1990) Acta Crystallogr B 46:698

    Article  Google Scholar 

  7. Fischer P, Polomska M, Sosnowska I, Szymanski M (1931) J Phys C 13:1980

  8. Jiang Y-P, Tang X-G, Liu Q-X, Chen D-G, Ma C-B (2014) J Mater Sci Mater Electron 25:495–499

    Article  Google Scholar 

  9. Yuan GL, Or SW, Liu JM, Liu ZG (2006) Appl Phys Lett 89:052905

    Article  Google Scholar 

  10. Li Y, Fan Y, Zhang H, Teng H, Dong X, Liu H, Ge X, Li X, Chen W, Li X, Ge Z (2014) J Supercond Nov Magn 27:1239

    Article  Google Scholar 

  11. Zhang ST, Zhang Y, Lu MH, Du CL, Chen YF, Liu ZG, Zhu YY, Ming NB, Pan XQ (2006) Appl Phys Lett 88:162901

    Article  Google Scholar 

  12. Ye W, Tan G, Dong G, Ren H, Xia A (2015) Ceram Int 41:4668

    Article  Google Scholar 

  13. Ablat A, Wu R, Mamat M, Li J, Muhemmed E, Si C, Wu R, Wang J, Qian H, Ibrahim K (2014) Ceram Int 40:14083

    Article  Google Scholar 

  14. Quan C, Ma Y, Han Y, Tang X, Lu M, Mao W, Zhang J, Yang J, Li X, Huang W (2015) J Alloy Compd 635:272–277

  15. Hu Z, Li M, Yu Y, Liu J, Pei L, Wang J, Liu X, Yu B, Zhao X (2010) Solid State Commun 150:1088–1091

    Article  Google Scholar 

  16. Yan X, Tan G, Liu W, Ren H, Xia A (2015) Ceram Int 41:3202–3207

    Article  Google Scholar 

  17. Tang P, Kuang D, Yang S, Zhang Y (2016) J Alloy Compd 656:912–919

    Article  Google Scholar 

  18. Beniwal A, Bangruwa JS, Walia R, Verma V (2016) Ceram Int 42:10373–10379

  19. Wang D, Wang M, Liu F, Cui Y, Zhao Q, Sun H, Jin H, Cao M (2015) Ceram Int 41:8768–8772

    Article  Google Scholar 

  20. Hernandez N, Gonzalez-Gonzalez VA, Dzul-Bautista IB, Gutierrez J, Barandiaran JM, Ruiz de Larramendi I, Cienfuegos-Pelaes RF, Ortiz- Mendez U (2015) J Alloy Compd 638:282–288

  21. Arora M, Chauhan S, Sati PC, Kumar M, Chhoker S (2014) Ceram Int 40:13347–13356

    Article  Google Scholar 

  22. Wang T, Song SH, Wang XL et al. (2018) J Sol-Gel Sci Technol 85:356

    Article  Google Scholar 

  23. Priya S, Banu IBS, Anwar MS, Hussain S (2016) J Sol-Gel Sci Technol 80:579

    Article  Google Scholar 

  24. Priya S, Banu IBS, Anwar MS (2016) J Magn Magn Mater 401:333–338

  25. Zheng Y, Tan G, Xia A, Ren H (2016) J Alloy Compd 684:438–444

    Article  Google Scholar 

  26. Ahmed MA, Mansour SF, Ei-Dek SI, Karamany MM (2016) J Rare Earths 34:495–506

    Article  Google Scholar 

  27. Vanga PR, Mangalaraja RV, Giridharan NV, Ashok M (2016) J Alloy Compd 684:55–61

    Article  Google Scholar 

  28. Chen L, He Y, Zhang J, Mao Z, Zhao Y-J, Chen X (2014) J Alloy Compd 604:327–330

    Article  Google Scholar 

  29. Xu J, Wang G, Wang H, Ding D, He Y (2009) Mater Lett 63:855

    Article  Google Scholar 

  30. Ederer C, Spaldin NA (2005) Phys Rev B 71:224103

  31. Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, Damjonovic D (2014) J Am Ceram Soc 97:1993

  32. Wang Y, Zheng RY, Sim CH, Wang J (2009) J Appl Phys 105:016106

    Article  Google Scholar 

  33. Palkar VR, Kundaliya DC, Malik SK, Bhattacharya S (2004) Phys Rev B 69:212102

    Article  Google Scholar 

  34. Kumar A, Yadav KL (2013) J Alloy Compd 554:138

    Article  Google Scholar 

  35. Kim WS, Jun YK, Kim KH, Hong SH (2009) J Magn Magn Mater 321:3262

    Article  Google Scholar 

  36. Dutta DP, Mandal BP, Mukadam MD, Yusuf SM, Tyagi AK (2014) Dalton Trans 43:7838

    Article  Google Scholar 

  37. Priya S, Banu IBS, Mohammed Z (2017) J Mater Sci Mater Electron 28:8467

Download references

Acknowledgements

The authors acknowledge the sophisticated analytical instrumentation facilities at the Indian Institute of Technology Madras for providing the facility of vibrating sample magnetometer. They also thank the sophisticated test and instrumentation centre, Cochin, for extending the TEM and HRTEM characterization. The authors thank Dr. M. S. Ramachander Rao, Department of Physics, Indian Institute of Technology Madras, for helping to characterize the electrical studies using Radiant Technology Pvt Ltd. The authors are extremely thankful to the Department of Science and Technology, India, for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Divya Lakshmi or I. B. Shameem Banu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmi, S.D., Banu, I.B.S. Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics. J Sol-Gel Sci Technol 89, 713–721 (2019). https://doi.org/10.1007/s10971-018-4901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4901-x

Keywords

Navigation