Skip to main content
Log in

Improvement of electrical conductivity and leakage current in co-precipitation derived Nd-doping BiFeO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFeO3 and Bi0.925Nd0.075FeO3 ceramics were prepared by co-precipitation method. The crystal structure and electrical properties of the samples were characterized by X-ray diffraction (XRD), impedance spectra and leakage current measurement. XRD result implied that the impurity phases are weakened by suitably doping Nd. The impedance spectra of BiFeO3 sample indicate that low grain boundary resistance and non Debye-type relaxation below the Néel temperature. Complex impedance spectra suggested that the doped samples are closer to Debye-type, and the grain boundary resistance increases which lead to low leakage current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429, 392 (2004)

    Article  Google Scholar 

  2. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  3. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  4. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C Solid State Phys. 13, 1931 (1980)

    Article  Google Scholar 

  5. R. Haumont, I.A. Kornev, S. Lisenkov, L. Bellaiche, J. Kreisel, B. Dkhil, Phys. Rev. B 78, 134108 (2008)

    Article  Google Scholar 

  6. I.A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, L. Bellaiche, Phys. Rev. Lett. 99, 227602 (2007)

    Article  Google Scholar 

  7. J.C. Chen, J.M. Wu, Appl. Phys. Lett. 91, 182903 (2007)

    Article  Google Scholar 

  8. S.V. Kizelev, R.P. Ozerov, G.S. Zhdanov, Sov. Phys. Dokl. 145, 1255 (1962)

    Google Scholar 

  9. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming, X.Q. Pan, Appl. Phys. Lett. 88, 162901 (2006)

    Article  Google Scholar 

  10. F. Gao, C. Cai, Y. Wang, S. Dong, X.Y. Qiu, G.L. Yuan, Z.G. Liu, J.M. Liu, J. Appl. Phys. 99, 094105 (2006)

    Article  Google Scholar 

  11. X.H. Zheng, Z.H. Ma, P.J. Chen, D.P. Tang, N. Ma, J. Mater. Sci. Mater. Electron. 23, 1533 (2012)

    Article  Google Scholar 

  12. S.K. Pradhan, J. Mater. Sci. Mater. Electron. 24, 1720 (2013)

    Article  Google Scholar 

  13. A.Z. Simões, F.G. Garcia, C.D.S. Riccardi, Mater. Chem. Phys. 116, 305 (2009)

    Article  Google Scholar 

  14. Z. Yan, K.F. Wang, J.F. Qu, Y. Wang, Z.T. Song, S.L. Feng, Appl. Phys. Lett. 91, 082906 (2007)

    Article  Google Scholar 

  15. F.Z. Huang, X.M. Lu, W.W. Lin, X.M. Wu, Y. Kan, J.S. Zhu, Appl. Phys. Lett. 89, 242914 (2006)

    Article  Google Scholar 

  16. G.L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 89, 052905 (2006)

    Article  Google Scholar 

  17. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, J. Magn. Magn. Mater. 320, 2602 (2008)

    Article  Google Scholar 

  18. M.C. Ferrarelli, D.C. Sinclair, A.R. West, H.A. Dabkowska, A. Dabkowski, G.M. Luke, J. Mater. Chem. 19, 5916 (2009)

    Article  Google Scholar 

  19. D.G. Chen, X.G. Tang, Q.X. Liu, Y.P. Jiang, C.B. Ma, R. Li, J. Appl. Phys. 113, 214110 (2013)

    Article  Google Scholar 

  20. S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86, 2215 (1999)

    Article  Google Scholar 

  21. J.F. Scott, Ferroelectric Memories (Springer, Berlin, 2000)

    Book  Google Scholar 

  22. K. Watanabe, A.J. Hartmann, R.N. Lamb, J.F. Scott, J. Appl. Phys. 84, 2170 (1998)

    Article  Google Scholar 

  23. S.M. Sze, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, NJ, 2007), p. 440

    Google Scholar 

  24. L. Pintilie, M. Alexe, J. Appl. Phys. 98, 124103 (2005)

    Article  Google Scholar 

  25. L. Pintilie, I. Vrejoiu, D. Hesse, G. LeRhun, M. Alexe, Phys. Rev. B 75, 104103 (2007)

    Article  Google Scholar 

  26. X.G. Tang, J. Wang, Y.W. Zhang, H.L.W. Chan, J. Appl. Phys. 94, 5163 (2003)

    Article  Google Scholar 

  27. Q.Y. He, X.G. Tang, Mcroelectron. Eng. 81, 1 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 10774030, 11032010 and 11202054), the Guangdong Provincial Natural Science Foundation of China (Grant Nos. 8151009001000003 and 10151009001000050), and the Guangdong Provincial Educational Commission of China (Grant No. 2012KJCX0044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Gui Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, YP., Tang, XG., Liu, QX. et al. Improvement of electrical conductivity and leakage current in co-precipitation derived Nd-doping BiFeO3 ceramics. J Mater Sci: Mater Electron 25, 495–499 (2014). https://doi.org/10.1007/s10854-013-1614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1614-3

Keywords

Navigation