Role of ɣ-Al2O3 on the mechanical and microstructural properties of metakaolin-based geopolymer cements

  • Hervé K. Tchakouté
  • Elie Kamseu
  • Charles Banenzoué
  • Claus H. Rüscher
  • Fernanda Andreola
  • Claudia C. L. Tchamo
  • Cristina Leonelli
Original Paper: Fundamentals of sol-gel and hybrid materials processing


The main target of this work is to investigate the influence of ɣ-Al2O3 on the properties of metakaolin-based geopolymer cements. The kaolin used as starting material for producing geopolymer cements contains approximately 28 and 64% of gibbsite and kaolinite, respectively. This kaolin was transformed to metakaolins by calcination at 500, 550, 600, 650, and 700 °C for 1 h. Gibbsite contained in kaolin was transformed to γ-Al2O3 during the calcination process. The hardener was obtained by mixing commercial sodium silicate and sodium hydroxide solution (10 M) with a mass ratio sodium silicate/sodium hydroxide equal to 1.6:1. Geopolymer cements, GMK-500, GMK-550, GMK-600, GMK-650, and GMK-700, were obtained using the prepared hardener with a mass ratio hardener/metakaolin equal to 0.87:1. It could be seen that the specific surface area of metakaolins decreases with increasing the calcination temperature of kaolin owing to the formation of the particles of γ-Al2O3. The compressive strengths 18.21/29.14/36.61/36.51 increase in the course GMK-550/GMK-600/GMK-650/GMK-700. The X-ray patterns and micrograph images of geopolymer cements, GMK-600, GMK-650, and GMK-700, indicate the presence of γ-Al2O3 in their structure. It was typically found that γ-Al2O3 remains largely unaffected during the geopolymerisation, and therefore could act as an inert filler and reinforce the structure of geopolymer cements.


Kaolin Gibbsite Metakaolins Hardener Geopolymer cements γ-Al2O3 



Hervé Tchakouté Kouamo gratefully acknowledges the Alexander von Humboldt Foundation for financial support the purchase of equipment under the grant N° KAM/1155741 STP.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim 37:1633–1656CrossRefGoogle Scholar
  2. 2.
    Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005a) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44:832–839CrossRefGoogle Scholar
  3. 3.
    Rüscher CH, Mielcarek E, Lutz W, Ritzmann A, Kriven WM (2010a) Weakening of alkali-activated metakaolin during ageing investigated by molybdate method and infrared absorption spectroscopy. J Am Ceram Soc 93:2585–2590CrossRefGoogle Scholar
  4. 4.
    Rüscher CH, Mielcarek E, Lutz W, Ritzmann A, Kriven WM (2010b) The ageing process of alkali-activated metakaolin. Ceram Trans 215:1–10Google Scholar
  5. 5.
    Tchakouté HK, Rüscher CH, Djobo JNY, Kenne BBD, Njopwouo D (2015) Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl Clay Sci 107:188–194CrossRefGoogle Scholar
  6. 6.
    Zibouche F, Kerdjoudj H, d’Espinose LJ-B, van Damme H (2009) Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl Clay Sci 43:453–458CrossRefGoogle Scholar
  7. 7.
    Zhang Z, Wang H, Yao X, Zhu Y (2012) Effects of halloysite in kaolin on the formation and properties of geopolymers. Cem Concr Comp 34:709–715CrossRefGoogle Scholar
  8. 8.
    Rüscher CH, Schulz A, Gougazeh MH, Ritzmann A (2013) Mechanical strength development of geopolymer binder and the effect of quartz content. In: Kriven WM, Wang J, Zhou Y, Gyekenyesi AL, Kirihara S, Widjaja S (Eds.) Developments in strategic materials and computational design IV. Wiley, Hoboken, NJ, Scholar
  9. 9.
    MacKenzie KJD, Temuujin J, Okada K (1999) Thermal decomposition of mechanically activated gibbsite. Thermochim Acta 327:103–108CrossRefGoogle Scholar
  10. 10.
    Favaro L, Boumaza A, Roy P, Ledion J, Sattonnay G, Brubach JB, Huntz AM, Tetot R (2010) Experimental and ab initio infrared study of χ-, k- and α-aluminas formed from gibbsite. J Solid State Chem 183:901–908CrossRefGoogle Scholar
  11. 11.
    Hill MR, Bastow TJ, Celotto S, Hill AJ (2007) Integrated study of the calcination cycle from gibbsite to corundum. Chem Mater 19:2877–2883CrossRefGoogle Scholar
  12. 12.
    Balan E, Lazzeri M, Morin G, Mauri F (2006) First-principles study of the OH-stretching modes of gibbsite. Am Miner 91:115–119CrossRefGoogle Scholar
  13. 13.
    Tchakouté KH, Rüscher CH, Kamseu E, Djobo JNY, Leonelli C (2017) The influence of gibbsite in kaolin and the formation of berlinite on the properties of metakaolin-phosphate-based geopolymer cements. Mater Chem Phys 199:280–288CrossRefGoogle Scholar
  14. 14.
    Brunelle JP, Nortier P, Poisson R (1987) In: Stiles AB (ed) Catalysts and supports catalysts, Butterworth: Boston, 1987, p 11–55Google Scholar
  15. 15.
    Samain L, Jaworski A, Edén M, Ladd DM, Seo DK, Garcia-Garcia FJ, Häussermann U (2014) Structural analysis of highly porous γ-Al2O3. J Solid State Chem 217:1–8CrossRefGoogle Scholar
  16. 16.
    Barbosa VFF (1999) Sintese e caracterizaçio de polissialatos. PhD Thesis. Instituo Militar de Engenharia, Rio de Janeiro, p 184Google Scholar
  17. 17.
    Weng L, Sagoe-Crentsil K, Brown T, Song S (2005) Effects of aluminates on the formation of geopolymers. Mater Sci Eng B 117:163–168CrossRefGoogle Scholar
  18. 18.
    Diaz EI, Allouche EN, Eklund S (2010) Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89:992–996CrossRefGoogle Scholar
  19. 19.
    Swanepoel JC, Strydom CA (2002) Utilization of fly ash in a geopolymeric material. Appl Geochem 17:1143–1148CrossRefGoogle Scholar
  20. 20.
    Lee WKW, van Deventer JSJ (2002) The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids Surf A 212:27–44Google Scholar
  21. 21.
    Criado M, Palomo A, Fernandez-Jimenez A (2005) Alkali activation of fly ash. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 84:2048–2054CrossRefGoogle Scholar
  22. 22.
    Rocha J, Klinowski J (1990) 295i and 27Al Magic-angle-spinning NMR studies of the transformation of kaolinite. Phys Chem Miner 17:179–186CrossRefGoogle Scholar
  23. 23.
    Maia AÁB, Angélica RS, de Freitas Neves R, Pöllmann H, Straub C, Saalwächter K (2014) Use of 29Si and 27Al MAS NMR to study thermal a ctivation of kaolinites from B razilian Amazon kaolin wastes Appl Clay Sci 87:189–196CrossRefGoogle Scholar
  24. 24.
    Klinowski J (1884) Nuclear magnetic resonance studies of zeolites. Prog NMR Spectrosc 16:237–309CrossRefGoogle Scholar
  25. 25.
    Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, Chichester West Sussex and New YorkGoogle Scholar
  26. 26.
    Ahn SW, Lee HS, Yang WH, Jeong YK (2011) 27Al MAS-RMN study of inorganic polymer formation at ambient temperature. Trans Nonferrous Met Soc China 21:182–187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hervé K. Tchakouté
    • 1
    • 2
  • Elie Kamseu
    • 3
    • 4
  • Charles Banenzoué
    • 5
  • Claus H. Rüscher
    • 2
  • Fernanda Andreola
    • 4
  • Claudia C. L. Tchamo
    • 6
  • Cristina Leonelli
    • 4
  1. 1.Department of Inorganic Chemistry, Laboratory of Applied Inorganic Chemistry, Faculty of ScienceUniversity of Yaounde IYaoundeCameroon
  2. 2.Institut für Mineralogie, Leibniz Universität HannoverHannoverGermany
  3. 3.Local Materials Promotion AuthorityNkolbikokCameroon
  4. 4.Department of Engineering Enzo FerrariUniversity of Modena and Reggio Emilia Via Vivarelli 10ModenaItaly
  5. 5.Faculty of ScienceThe University of DoualaDoualaCameroon
  6. 6.University of Sciences and TechnologyLille 1France

Personalised recommendations