Skip to main content
Log in

Aqueous solution–gel precursors for LiFePO 4 lithium ion battery cathodes, their decomposition and phase formation

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Several aqueous solution–gel precursors for the Li ion battery cathode material LiFePO4, were synthesized. These differ in their composition, both regarding their Fe source, as well as in the complexing agent present. Fe(II) lactate hydrate is for the first time used as Fe2+ source. The ability to use an Fe3+ source (Fe(III) nitrate nonahydrate) for the synthesis of LiFePO4 is also investigated. Our results show that it is possible to reduce the Fe3+ to Fe2+, necessary to enable LiFePO4 phase formation, during annealing under specific conditions. The decomposition behavior for these precursors in dry air, as well as in an inert atmosphere, is shown. Raman spectroscopy is used to evaluate the structure of the carbon phases present after annealing of the precursor powders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi:10.1149/1.1837571

    Article  Google Scholar 

  2. Yamada A, Chung S-C (2001) Crystal chemistry of the olivine-type Li(Mn[sub y]Fe[sub 1−y])PO[sub 4] and (Mn[sub y]Fe[sub 1−y])PO[sub 4] as Possible 4 V Cathode Materials for Lithium Batteries. J Electrochem Soc 148:A960. doi:10.1149/1.1385377

    Article  Google Scholar 

  3. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. doi:10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  4. Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2:132–154. doi:10.3390/inorganics2020132

    Article  Google Scholar 

  5. Nazri G-A, Pistoia G (2004) Lithium batteries: science and technology. Lithium Batter Sci Technol doi:10.1007/978-0-387-92675-9

  6. Sauvage F, Baudrin E, Gengembre L, Tarascon J-M (2005) Effect of texture on the electrochemical properties of LiFePO4 thin films. Solid State Ionics 176:1869–1876. doi:10.1016/j.ssi.2005.05.012

    Article  Google Scholar 

  7. Delacourt C, Poizot P, Morcrette M et al. (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99. doi:10.1021/cm030347b

    Article  Google Scholar 

  8. Nishimura S, Kobayashi G, Ohoyama K et al. (2008) Experimental visualization of lithium diffusion in LixFePO4. Nat Mater 7:707–711. doi:10.1038/nmat2251

    Article  Google Scholar 

  9. Islam MS, Driscoll DJ, Fisher CAJ et al. (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. 17:5085–5092. doi:10.1021/cm050999v

  10. Park OK, Cho Y, Lee S et al. (2011) Who will drive electric vehicles, olivine or spinel? Energy Environ Sci 4:1621. doi:10.1039/c0ee00559b

    Article  Google Scholar 

  11. Hasegawa G, Ishihara Y, Kanamori K et al. (2011) Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem Mater 23:5208–5216. doi:10.1021/cm2021438

    Article  Google Scholar 

  12. Gaberscek M, Dominko R, Bele M et al. (2006) Mass and charge transport in hierarchically organized storage materials. Example: porous active materials with nanocoated walls of pores. Solid State Ionics 177:3015–3022. doi:10.1016/j.ssi.2006.07.060

    Article  Google Scholar 

  13. Zaghib K, Mauger A, Julien CM (2012) Overview of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845. doi:10.1007/s10008-011-1629-8

    Article  Google Scholar 

  14. Toprakci O, Toprakci HaK, Ji L, Zhang X (2010) Fabrication and electrochemical characteristics of LiFePO 4 powders for lithium-ion batteries. KONA Powder Part J 28:50–73. doi:10.14356/kona.2010008

    Article  Google Scholar 

  15. Chen Q, Li X, Wang J (2011) Electrochemical performance of LiFePO4/(C+Fe2P) composite cathode material synthesized by sol-gel method. J Cent South Univ Technol 18:978–984. doi:10.1007/s11771-011-0790-7

    Article  Google Scholar 

  16. Lin H, Yeh S, Chen J (2014) Physical and electrochemical properties of LiFePO 4 / C nanofibers synthesized by electrospinning. Int J Electrochem Sci 9:6936–6948

    Google Scholar 

  17. Yang G, Jiang CY, He XM et al. (2013) Preparation of Li3V2 (PO4)3/LiFePO4 composite cathode material for lithium ion batteries. Ionics 19:1247–1253. doi:10.1007/s11581-013-0856-7

    Article  Google Scholar 

  18. Xie H-M, Wang R-S, Ying J-R et al. (2006) Optimized LiFePO4–polyacene cathode material for lithium-ion batteries. Adv Mater 18:2609–2613. doi:10.1002/adma.200600578

    Article  Google Scholar 

  19. Oh SW, Myung ST, Oh SM et al. (2010) Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater 22:4842–4845. doi:10.1002/adma.200904027

    Article  Google Scholar 

  20. Barbooti MM, Al-Sammerrai DA (1986) Thermal decomposition of citric acid. Thermochim Acta 98:119–126. doi: 10.1016/0040-6031(86)87081-2

    Article  Google Scholar 

  21. Wieczorek-Ciurowa K, Kozak AJ (1999) The thermal decomposition of Fe(NO3)3×9H2O. J Therm Anal Calorim 58:647–651. doi:10.1063/1.3253104

    Article  Google Scholar 

  22. Yu DYW, Donoue K, Kadohata T et al. (2008) Impurities in LiFePO(4) and their influence on material characteristics. J Electrochem Soc 155:A526–A530. doi:10.1149/1.2919105

    Article  Google Scholar 

  23. Zhou N, Wang HY, Uchaker E et al. (2013) Additive-free solvothermal synthesis and Li-ion intercalation properties of dumbbell-shaped LiFePO4/C mesocrystals. J Power Sources 239:103–110. doi:10.1016/j.jpowsour.2013.03.136

    Article  Google Scholar 

  24. Chen Z, Qin Y, Amine K, Sun Y-K (2010) Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem 20:7606. doi:10.1039/c0jm00154f

    Article  Google Scholar 

  25. Kim K, Cho Y-H, Kam D et al. (2010) Effects of organic acids as reducing agents in the synthesis of LiFePO4. J Alloys Compd 504:166–170. doi:10.1016/j.jallcom.2010.05.078

    Article  Google Scholar 

  26. Ravet N, Gauthier M, Zaghib K et al. (2007) Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chem Mater 19:2595–2602. doi:10.1021/cm070485r

    Article  Google Scholar 

  27. Zhao RR, Ma GZ, Zhu LC et al. (2012) An improved carbon-coating method for LiFePO 4 / C composite derived from Fe 3 + precursor. Int J Electrochem Sci 7:10923–10932

    Google Scholar 

  28. Elmagirbi A, Sulistyarti H, Atikah (2012) Study of Ascorbic acid as iron(III) reducing agent for spectrophotometric iron speciation. J Pure Appl Chem Res 1:11–17

    Article  Google Scholar 

  29. Vogel A, Svehla G (1979) Vogel’s textbook of macro and semimicro qualitative inorganic analysis, 5th edn. Longman, London

    Google Scholar 

  30. Kumar A, Thomas R, Karan NK et al. (2009) Structural and electrochemical characterization of pure LiFePO4 and nanocomposite C-LiFePO4 cathodes for lithium ion rechargeable batteries. J Nanotechnol 2009:1–10. doi:10.1155/2009/176517

    Article  Google Scholar 

  31. Fey GT-K, Tu H-J, Huang K-P et al. (2012) Particle size effects of carbon sources on electrochemical properties of LiFePO4/C composites. J Solid State Electrochem 16:1857–1862. doi:10.1007/s10008-011-1621-3

    Article  Google Scholar 

  32. Kostecki R, Schnyder B, Alliata D et al. (2001) Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396:36–43. doi: 10.1016/S0040-6090(01)01185-3

    Article  Google Scholar 

  33. Maccario M, Croguennec L, Desbat B et al. (2008) Raman and FTIR spectroscopy investigations of carbon-coated Li[sub x]FePO[sub 4] materials. J Electrochem Soc 155:A879. doi:10.1149/1.2977961

    Article  Google Scholar 

  34. Gołąbczak M, Konstantynowicz a (2009) Raman spectra evaluation of the carbon layers with Voigt profile. J Achiev Mater Manuf Eng 37:270–276

    Google Scholar 

  35. Doeff MM, Wilcox JD, Yu R et al. (2008) Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. J Solid State Electrochem 12:995–1001. doi:10.1007/s10008-007-0419-9

    Article  Google Scholar 

  36. Hsu K-F, Tsay S-Y, Hwang B-J (2004) Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol?gel route. J Mater Chem 14:2690

    Article  Google Scholar 

  37. Hong J, Wang C, Dudney NJ, Lance MJ (2007) Characterization and performance of LiFePO[sub 4] thin-film cathodes prepared with radio-frequency magnetron-sputter deposition. J Electrochem Soc 154:A805. doi:10.1149/1.2746804

    Article  Google Scholar 

  38. Yan X, Yang G, Liu J et al. (2009) An effective and simple way to synthesize LiFePO4/C composite. Electrochim Acta 54:5770–5774. doi:10.1016/j.electacta.2009.05.048

    Article  Google Scholar 

  39. Julien CM, Zaghib K, Mauger A et al. (2006) Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries. J Appl Phys doi:10.1063/1.2337556

  40. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163. doi:10.1039/c1ee01263k

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ken Elen for carrying out the XRD measurements and Dries De Sloovere for TGA measurements. Thomas Vranken is a Ph.D. fellow of the Research Foundation—Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hardy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vranken, T., Van Gompel, W., D’Haen, J. et al. Aqueous solution–gel precursors for LiFePO 4 lithium ion battery cathodes, their decomposition and phase formation. J Sol-Gel Sci Technol 84, 198–205 (2017). https://doi.org/10.1007/s10971-017-4467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4467-z

Keywords

Navigation