Skip to main content
Log in

Low temperature, fast synthesis and ionic conductivity of Li6MLa2Nb2O12 (M = Ca, Sr, Ba) garnets

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we report low temperature, fast synthesis of Li6MLa2Nb2O12 (M = Ca, Sr, Ba) with the cubic garnet structure by sol–gel process. The optimized synthesis condition is 775 °C for 6 h with 10% excess lithium salt. The calcination temperature is nearly 125 °C lower than that in the solid state reaction, and the calcination time(~6 h) is shorter than in the solid state reaction(~24 h). Qualitative phase analysis by X-ray powder diffraction patterns combined with the Rietveld method reveals garnet type compounds as major phases. The cubic lattice parameter is found to increase with increasing size of the alkaline earth ions under the same preparation conditions. The density was found to be increasing with increasing ionic radius of the alkaline earth elements. In comparison, the ionic conductivity decreases with decreasing ionic radius of the alkaline earth elements. Among the compounds, the Li6BaLa2Nb2O12 exhibits the highest ionic conductivity of 1.2 × 10−5 S cm−1 at room temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries[J]. Chem Mater 22(3):587–603

    Article  Google Scholar 

  2. Jacobson AJ (2010) Materials for solid oxide fuel cells[J]. Chem Mater 22(3):660–674

    Article  Google Scholar 

  3. Yutao Li Jian-Tao, Han, Chang-An Wang Hui, Xie, Goodenough JohnB (2012) Optimizing Li+ conductivity in a garnet framework[J]. J Mater Chem 22:15357–15361

    Article  Google Scholar 

  4. Nakayama M, Kotobuki M, Munakata H, Nogami M, Kanamura K (2012) First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides[J]. Phys Chem Chem Phys 14(28):10008–10014

    Article  Google Scholar 

  5. Rosenkiewitz N, Schuhmacher J, Bockmeyer M, Deubener J (2015) Nireogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12(LLZO)[J]. J Power Sources 278(1-2):104–108

    Article  Google Scholar 

  6. Cussen JE, Thamas WS (2007) A neutron diffraction study of the d0 and d10 lithium garnets Li3Nd3W2O12 and Li5La3Sb2O12[J]. J Solid State Chem 180:1832–1839

    Article  Google Scholar 

  7. Murngan R, Wepper W, Schmid-Beurmann P (2007) Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12[J]. Mater Sci Eng B 143:14–20

    Article  Google Scholar 

  8. Thangadurai V, Narayanan S, Pinaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chem Soc Rev 43(13):4714–4727

    Article  Google Scholar 

  9. Ohta S, Kobayashi T, Seki J, Asaoka T (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. J Power Sources 202(1-2):332–335

    Article  Google Scholar 

  10. Thangadurai V, Weppner W (2005) Li6ALa2M2O12 (A = Ca, Sr, Ba): a new class of fast lithium ion conductors with Garnet-like structure [J]. J Am Ceram Soc. 88(2):411–418

    Article  Google Scholar 

  11. Thangadurai V, Weppner W (2005) Li6ALa2Ta2O12 (A. = .Sr,.Ba): novel garnet‐like oxides for fast lithium ion conduction. Adv Funct Mater 15:107–112

    Article  Google Scholar 

  12. Wang Y, Lai W (2012) High ionic conductivity lithium garnet oxides of Li7-xLa3Zr2-xTaxO12 compositions. Solid State Lett 15(5):A68–A71

    Article  Google Scholar 

  13. Larraz G, Orera A, Sanjuàn ML (2013) Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration[J]. J Mater Chem 1(37):11419–11428

    Article  Google Scholar 

  14. Thompson T, Wolfenstine J, Allen JL, Johannes M, Huq A, David IN, Sakamoto J (2014) Tetragonal vs. cubic phase stability in Al- free Ta Doped Li7La3Zr2O12(LLZO) [J]. J Mater Chem A 2(33):13431–13436

    Article  Google Scholar 

  15. Mukhopadhyay S, Thompson T, Sakamoto J, Huq A, Wolfenstine J, Allen JL, Bernstein N, Stewart DA, Johannes MD (2015) Structure and stoichiometry in supervalent doped Li7La3Zr2O12 [J]. Chem Mater 27(10):3658–3665

    Article  Google Scholar 

  16. Percival J, Kendrick E, Smith RI, Slater PR (2009) Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12. Dalton Trans 26:5177–5181

  17. Awaka J, Kijima N, Kataoka K, Hayakawa H, Ohshima K-i, Akimoto J (2010) Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure[J]. J Solid State Chem 183:180–185

    Article  Google Scholar 

  18. Murugan R, Thangadurai V, Weppner W (2008) Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5 + x BaLa2Ta2O11.5 + 0.5x (x = 0–2). Appl Phys A 91:615–621

    Article  Google Scholar 

  19. Narayanan S, Ramezanipour F, Thangadurai V (2012) Enhancing Li ion conductivity of garnet-type Li5La3Nb2O12 by Y- and Li-codoping: Synthesis, structure, chemical stability, and transport properties[J]. J Phys Chem C 116(38):20154–20162

    Article  Google Scholar 

  20. Baral AK, Narayanan S, Ramezanipour F, Thangadurai V (2014) Evaluation of fundamental transport properties of Li-excess garnet type Li5+2xLa3Ta2−xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy[J]. Phys Chem Chem Phys 16:11356–11365

    Article  Google Scholar 

  21. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr 2-x,Nbx)O12 (x = 0–2)[J]. J Power Sources 196(6):3342–3345

    Article  Google Scholar 

  22. Peng H, Wu Q, Xiao L (2013) Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol-gel process[J]. J Sol–Gel Sci Technol 66(1):175–179

    Article  Google Scholar 

  23. Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications [J]. Prog Mater Sci 88:325–411

    Article  Google Scholar 

  24. Ullmann H, Trofimenko N, Tietz F, Stover D, Khanlou AA (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type for SOFC cathodes [J]. Solid State Ionics 138:79–90

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (50954006), Hunan Provincial Environmental Protection Bureau (2014–22), the Hunan Intellectual Property Bureau(2014e004), the Development and Reform Commission of Hunan Province(2016-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Feng, L., Zhang, Y. et al. Low temperature, fast synthesis and ionic conductivity of Li6MLa2Nb2O12 (M = Ca, Sr, Ba) garnets. J Sol-Gel Sci Technol 83, 660–665 (2017). https://doi.org/10.1007/s10971-017-4453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4453-5

Keywords

Navigation