Skip to main content

Advertisement

Log in

Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new ambient-dried silica aerogel nanocomposites reinforced by smaller diameter microglass fiber mat were synthesized. Effects of gel treatment and drying temperature, molar ratio of modification agent and volume content of microglass fiber on the composites’ structure and properties were investigated. Increasing the gel treatment temperature with a gradient multi-segment drying process, the aerogel density and volume shrinkage decreased rapidly. Homogeneous and translucent bulk aerogel could be obtained with the density of 0.129 g/cm3, specific surface area of 731.76 m2/g and average pore size of 20 nm. Fewer cracks, more silica matrix and stronger fiber/silica interface, which significantly improves the mechanical performance of the nanocomposites with a high bending strength of 1.4 MPa. The thermal conductivity of the ambient-dried nanocomposites decreased and the bending strength increased with increasing fibers’ volume content. The retrieved nanocomposites is an excellent thermal insulation material with lower thermal conductivity (0.022 W/m K, 650 °C) and high mechanical performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  Google Scholar 

  2. Kuhn J, Gleissner T, Arduini-Schuster MC, Korder S, Fricke J (1995) Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids 186:291–295

    Article  Google Scholar 

  3. Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300

    Article  Google Scholar 

  4. Lee D, Stevens PC, Zeng SQ, Hunt AJ (1995) Thermal characterization of carbon-opacified silica aerogels. J Non-Cryst Solids 186:285–290

    Article  Google Scholar 

  5. Zha JJ, Duan YY, Wang XD, Zhang XR, Han YH, Gao YB, Lv ZH, Yu HT, Wang BX (2013) Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int J Therm Sci 70:54–64

    Article  Google Scholar 

  6. Zhang HX, He XD, He F (2009) Microstructure and physicochemical properties of ambient-dried SiO2 aerogels with K2Ti6O13 whisker additive. J Alloy Compd 472:194–197

    Article  Google Scholar 

  7. Li XK, Liu L, Zhang YX, Shen SD, Ge S, Ling LC (2011) Synthesis of nanometer silicon carbide whiskers from binary carbonaceous silica aerogels. Carbon 39:159–165

    Article  Google Scholar 

  8. Fomitchev DV, Trifu R, Gould G (2004) Fiber reinforced silica aerogel composites: thermal insulation for high-temperature applications. Ninth Biennial Conference on Eng Constr Oper Challg Environ 2004:968–975

  9. Gibson PW, Lee C, Ko F, Reneker D (2007) Application of nanofiber technology to nonwoven thermal insulation. J Eng Fiber Fabr 2:32–40

    Google Scholar 

  10. Gao QF, Feng J, Zhang CR, Feng JZ, Wu W, Jiang YG (2009) Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites. J Chin Ceram Soc 37:1–5

    Google Scholar 

  11. Yuan B, Ding SQ, Wang DD, Wang G, Li HX (2012) Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater Lett 75:204–206

    Article  Google Scholar 

  12. Li XL, Wang QP, Li HL, Ji HM, Sun XH, He J (2013) Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J Sol–Gel Sci Technol 67:646–653

    Article  Google Scholar 

  13. Mi CH, Jiang YG, Shi DQ, Han SW, Sun YT, Yang XG, Feng J (2014) Mechanical property test of ceramic fiber reinforced silica aerogel composites. Acta Mat Compos Sin 31:635–643

    Google Scholar 

  14. Jabbari M, Kesson DA, Skrifvars M, Taherzadeh MJ (2015) Novel lightweight and highly thermally insulative silica aerogel-doped poly(vinylchloride)-coated fabric composite. J Reinf Plast Comp 0:1–12

    Google Scholar 

  15. Karout A, Buisson P, Perrard A, Pierre AC (2005) Shaping and mechanical reinforcement of silica aerogel biocatalysts with encapsulated lipase. J Sol–Gel Sci Technol 36:163–171

    Article  Google Scholar 

  16. Jones SM (2006) Aerogel: space exploration applications. J Sol–Gel Sci Technol 40:351–357

    Article  Google Scholar 

  17. Shaid A, Furgusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2:37–43

    Google Scholar 

  18. Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63:315–339

    Article  Google Scholar 

  19. Bheekhun N, Abu Talib AR, Hassan MR (2013) Aerogels in aerospace: an overview. Adv Mater Sci Eng 2013:1–18

    Article  Google Scholar 

  20. Qi ZK, Huang DM, He S, Yang H, Hu Y, Li LM, Zhang HP (2013) Thermal protective performance of aerogel embedded firefighter’s protective clothing. J Eng Fiber Fabr 8:134–139

    Google Scholar 

  21. Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374:439–443

    Article  Google Scholar 

  22. Zhang HX, Qiao YJ, Zhang XH, Fang SQ (2010) Structural and thermal study of highly porous nanocomposite SiO2-based aerogels. J Non-Cryst Solids 356:879–883

    Article  Google Scholar 

  23. Jung IK, Gurav JL, Ha TJ, Choi SG, Baek S, Park HH (2012) The properties of silica aerogels hybridized with SiO2 nanoparticles by ambient pressure drying. Ceram Int 38S:105–108

    Article  Google Scholar 

  24. Yang HX, Ye F, Liu Q, Gao Y (2015) Microstructure and properties of the Si3N4/silica aerogel composites fabricated by the sol–gel method via ambient pressure drying. Mater Design 85:438–443

    Article  Google Scholar 

  25. Han X, Williamson F, Bhaduri GA, Harvey A, Siller L (2015) Synthesis and characterisation of ambient pressure dried composites of silica aerogel matrix and embedded nickel nanoparticles. J Supercrit Fluids 106:140–144

    Article  Google Scholar 

  26. Wang J, Wei Y, He WN, Zhang XT (2014) A versatile ambient pressure drying approach to synthesize silica-based composite aerogels. RSC Adv 4:51146–51155

    Article  Google Scholar 

  27. Mohammadi A, Moghaddas J (2015) Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites. Chem Eng Res Design 94:475–484

    Article  Google Scholar 

  28. Liu HL, Chu P, Li HY, Zhang HY, Li JD (2016) Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure. J Sol–Gel Sci Technol 80:651–659

    Article  Google Scholar 

  29. Shi YC, Li TH, Wang XL, Liu HG, Lv J, Zhang ZG (2013) Preparation and characterization of silica aerogel/mesophase pitch derived carbon foam. J Funct Mater 44:3049–3052

    Google Scholar 

  30. Liu HG, Li TH, Shi YC, Zhao X (2015) Thermal insulation composite prepared from carbon foam and silica aerogel under ambient pressure. J Mater Eng Perform 24:4054–4059

    Article  Google Scholar 

  31. Rezaei E, Moghaddas J (2016) Thermal conductivities of silica aerogel composite insulating material. Adv Mater Lett 7:296–301

    Article  Google Scholar 

  32. Chakraborty S, Pisal AA, Kothari VK, Rao AV (2016) Synthesis and characterization of fibre reinforced Silica aerogel blankets for thermal protection. Adv Mater Sci Eng 2016:1–8

    Article  Google Scholar 

  33. Li Z, Cheng XD, He S, Shi XJ, Gong LL, Zhang HP (2016) Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Comp Part A 84:316–325

    Article  Google Scholar 

  34. Li Z, Gong LL, Cheng XD, He S, Li CC, Zhang HP (2016) Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater Design 99:349–355

    Article  Google Scholar 

  35. Martinez RG, Goiti E, Reichenauer G, Zhao SY, Koebel M, Barrio A (2016) Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale. Energ Builds 128:111–118

    Article  Google Scholar 

  36. Zhang ZH, Shen J, Ni XY, Wu GM, Zhou B, Yang MX, Gu XC, Qian MJ, Wu YH (2006) Hydrophobic silica aerogels strengthened with nonwoven fibers. J Macromol Sci Part A 43:1663–1670

    Article  Google Scholar 

  37. Chandradass J, Kang S, Bae DS (2008) Synthesis of silica aerogel blanket by ambient drying method using water glass based precursor and glass wool modified by alumina sol. J Non-Cryst Solids 354:4115–4119

    Article  Google Scholar 

  38. Kim CY, Lee JK, Kim BI (2008) Synthesis and pore analysis of aerogel–glass fiber composites by ambient drying method. Collod Surf A 313–314:179–182

    Article  Google Scholar 

  39. Shao ZD, He XY, Niu ZW, Huang T, Cheng X, Zhang Y (2015) Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths. Mater Chem Phys 162:346–353

    Article  Google Scholar 

  40. Liu GW, Liu YG (2016) Rapid synthesis of super insulation silica aerogel composites strengthened with mullite fibers. International Conference on Civil, Transportation and Environment (ICCTE 2016) :1300–1304

  41. Zhang MC, Zeng RJ (2011) Preparation of thermal ins ulation block by slip casting and drying at ambient pressure and room temperature. J Mater Eng 9:33–38

    Google Scholar 

  42. Yu YX, Wu XY, San HS (2015) Preparation and characterization of hydrophobic SiO2-glass fibers aerogels via ambient pressure drying. J Mater Eng 43:31–36

    Google Scholar 

  43. Motahari S, Abolghasemi A (2015) Silica aerogel–glass fiber composites as fire shield for steel frame structures. J Mater Civil Eng 27:04015008-1–7

    Google Scholar 

  44. Shi XJ, Zhang RF, He S, Li Z, Cao W, Cheng XD (2016) Synthesis and heat insulation performance of glass fiber reinforced SiO2 aerogel composites. J Chin Ceram Soc 44:129–136

    Google Scholar 

  45. Wang BM, Song K, Ma HN (2013) Synthesis and characterization of carbon nanofibers doped silica aerogels. J Harbin Eng Univ 34:604–607

    Google Scholar 

  46. Ślosarczyk A, Wojciech S, Piotr Z, Paulina J (2015) Synthesis and characterization of carbon fiber/silica aerogel nanocomposites. J Non-Cryst Solids 416:1–3

    Article  Google Scholar 

  47. Hayase G, Nonomura K, Kanamori K, Maeno A, Kaji H, Nakanishi K (2016) Boehmite nanofiber−polymethylsilsesquioxane core−Shell porous monoliths for a thermal insulator under low vacuum conditions. Chem Mater 28:3237–3240

    Article  Google Scholar 

  48. Rao AP, Rao AV, Pajonk GM, Shewale PM (2007) Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J Mater Sci 42:8418–8425

    Article  Google Scholar 

  49. Shewale PM, Rao AV, Rao AP (2008) Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appi Surf Sci 254:6902–6907

    Article  Google Scholar 

  50. Cheng Y, Li N, Wei CD (2016) Effect of the TMCS/hydrogel volume ratio on physical properties of silica aerogels based on fly ash acid sludge. J Sol–Gel Sci Technol 78:279–284

    Article  Google Scholar 

  51. Rao AV, Nilsen E, Einarsrud MA (2011) Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method. J Non-Cryst Solids 286:165–171

    Google Scholar 

  52. Gurav JL, Rao AV, Bangi UK (2009) Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor. J Alloy Compd 471:296–302

    Article  Google Scholar 

  53. McKay NL, Timusk T, Farnworth B (1984) Determination of optical properties of fibrous thermal insulation. J Appli Phys 55:4064–4070

    Article  Google Scholar 

  54. Bernard B, Kueppers U, Ortiz H (2015) Revisiting the statistical analysis of pyroclast density and porosity data. Solid Earth 6:869–879

    Article  Google Scholar 

  55. Lauffer MA (1961) Theory of diffusion in gels. Biophys J 1:205–213

    Article  Google Scholar 

  56. Amsden B (1998) Solute diffusion within hydrogels: mechanisms and models. Macromolecules 31:8382–8395

    Article  Google Scholar 

  57. Scherer GW (1988) Aging and drying of gels. J Non-Cryst Solids 100:77–92

    Article  Google Scholar 

  58. Simpkins PG, Johnson DW, Fleming DA (1989) Drying behavior of colloidal silica gels. J Am Ceram Soc 72:1816–1821

    Article  Google Scholar 

  59. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  60. Jennings SG (1988) The mean free path in air. J Aerosol Sci 19:159–166

    Article  Google Scholar 

  61. Mahadik DB, Rao AV, Rao AP, Wagh PB, Ingale SV, Gupta SC (2011) Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. J Colloid Interf Sci 356:298–302

    Article  Google Scholar 

  62. Feng JZ, Zhang CC, Feng J, Jiang YG, Zhao N (2011) Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements. Appl Mater Interf 3:4796–4803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jiang.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Feng, J. & Feng, J. Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity. J Sol-Gel Sci Technol 83, 64–71 (2017). https://doi.org/10.1007/s10971-017-4383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4383-2

Keywords

Navigation