Skip to main content

Advertisement

Log in

The effect and characterization of newly synthesized SrBr2 reinforced bone grafts on structure and cell viability

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a highly durable SrBr2 compound was added to Ca(NO3)2·4H2O, KOH, NaNO3, P2O5, and urea (CO(NH2)2) compounds at different ratios (wt 10–30%); biografts were synthesized in different compositions using the sol gel method They were characterized using X-ray diffraction, Fourier transform infrared spectrometer, scanning electron microscope, and mechanical tests e.g. hardness and compression. Structural, mechanical properties and cell viabilities of the synthesized biografts were comparatively examined. Fourier transform infrared spectrometer and X-ray diffraction analysis results showed that, including SrBr2, hydroxyapatite had formed in the biografts. Also, hardness and compression tests revealed that compressive stress and hardness values of the grafts increased as the amount of SrBr2 increased. The cell viability ratios also enhanced with the amount of SrBr2 increased in the synthesized biografts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    Article  Google Scholar 

  2. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  3. Best SM, Porter AE, Thian ES, Huang J (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28(7):1319–1327

    Article  Google Scholar 

  4. Safranova TV, Putlyaev VI, Shekhirev MA, Tredyakov YD, Kuznetsov AV, Belyakov AV (2009) Densification additives for hydoxapatite ceramics. J Eur Ceram Soc 29:1925–1932

    Article  Google Scholar 

  5. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9(8):7591–7621

    Article  Google Scholar 

  6. Ducheyne P (1998) Bioactive calcium phosphate ceramics and glasses. Hip surgery: New Materials and Developments, London, pp 75–82

    Google Scholar 

  7. Hollinger JO, Brekke J, Gruskin E, Lee D (1996) Role of bone substitutes. Clin Orthop Relat Res 324:55–65

    Article  Google Scholar 

  8. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17(2):175–185

    Article  Google Scholar 

  9. Eggli PS, Moller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 232:127–138

    Google Scholar 

  10. Metsger DS, Driskell TD, Paulsrud JR (1982) Tricalcium phosphate ceramic—a resorbable bone implant: review and current status. J Am Dent Assoc 105(6):1035–1038

    Article  Google Scholar 

  11. Kivrak N, Taş AC (1998) Synthesis of calcium hydroxyapatite‐tricalcium phosphate (HA‐TCP) composite bioceramic powders and their sintering behavior. J Am Ceram Soc 81(9):2245–2252

    Article  Google Scholar 

  12. Kwon SH, Jun YK, Hong SH, Kim HE (2003) Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders. J Eur Ceram Soc 23(7):1039–1045

    Article  Google Scholar 

  13. O’Hare P, Meenan BJ, Burke GA, Byrne G, Dowling D, Hunt JA (2010) Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials 31(3):515–522

    Article  Google Scholar 

  14. Habibovic P, Kruyt MC, Juhl MV, Clyens S, Martinetti R, Dolcini L et al. (2008) Comparative in vivo study of six hydroxyapatite‐based bone graft substitutes. J Orthop Res 26(10):1363–1370

    Article  Google Scholar 

  15. Liu DM, Troczynski T, Tseng WJ (2001) Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 22(13):1721–1730

    Article  Google Scholar 

  16. Agrawal K, Singh G, Puri D, Prakash S (2011) Synthesis and characterization of hydroxyapatite powder by sol–gel method for biomedical application. J Miner Mater Charact Eng 10(08):727

    Google Scholar 

  17. Sanosh KP, Chu MC, Balakrishnan A, Kim TN, Cho SJ (2009) Preparation and characterization of nano-hydroxyapatite powder using sol–gel technique. Bull Mater Sci 32(5):465–470

    Article  Google Scholar 

  18. Uota M, Arakawa H, Kitamura N, Yoshimura T, Tanaka J, Kijima T (2005) Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir 21(10):4724–4728

    Article  Google Scholar 

  19. Gopi D, Indira J, Nithiya S, Kavitha L, Mudali UK, Kanimozhi K (2013) Influence of surfactant concentration on nanohydroxyapatite growth. Bull Mater Sci 36(5):799–805

    Article  Google Scholar 

  20. Feng W, Mu-Sen L, Yu-Peng L, Yong-Xin Q (2005) A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 59(8):916–919

    Article  Google Scholar 

  21. Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett 61(18):3978–3983

    Article  Google Scholar 

  22. Demirel M, Aksakal B (2016), The synthesis of eggshell-derived nano- and microscale hydroxyapatite bioceramic bone grafts, J Sol Gel Sci Technol 78(1):126–134

  23. Demirel M, Aksakal B (2015) Synthesis of novel Meerschaum (Sepiolite) derived bioceramics versus hydroxyapatite based bone grafts. Ceram Int 41(8):9251–9258

    Article  Google Scholar 

  24. Suchanek W, Yashima M, Kakihana M, Yoshimura M (1997) Hydroxyapatite ceramics with selected sintering additives. Biomaterials 18(13):923–933

    Article  Google Scholar 

  25. Demirel M, Aksakal B (2015) Enhanced bone regeneration in rabbit tibial defects implanted with newly fabricated bioceramic bone grafts. Int J Appl Ceram Technol 12(2):254–263

    Article  Google Scholar 

  26. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2004) CaO–P2O5–Na2O-based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials 25(12):2331–2339

    Article  Google Scholar 

  27. Georgiou G, Knowles JC (2001) Glass reinforced hydroxyapatite for hard tissue surgery—part 1: mechanical properties. Biomaterials 22(20):2811–2815

    Article  Google Scholar 

  28. Oudadesse H, Dietrich E, Bui XV, Le Gal Y, Pellen P, Cathelineau G (2011) Enhancement of cells proliferation and control of bioactivity of strontium doped glass. Appl Surf Sci 257(20):8587–8593

    Article  Google Scholar 

  29. Guo D, Xu K, Zhao X, Han Y (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26(19):4073–4083

    Article  Google Scholar 

  30. Thormann U, Ray S, Sommer U, ElKhassawna T, Rehling T, Hundgeburth M et al. (2013) Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials 34(34):8589–8598

    Article  Google Scholar 

  31. Huanga Y, Zhanga X, Zhang H, Qiaoa H, Zhanga X, Jiaa T, Hanb S, Gaod Y, Xiaoe H, Yang H (2016) Fabrication of silver- and strontium-doped hydroxyapatite/TiO2nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity. Ceram Int 43(1):992–1007

  32. Jastrze W, Sitarz M, Rokita M, Bulat K (2011) Spectrochim. Acta A 79:722–727

    Article  Google Scholar 

  33. Nakamoto K (1986) Infrared and raman spectra of inorganic and coordination compounds, 4th ed.. Wiley, New York, (Chapters 2 and 3)

    Google Scholar 

  34. Niaura G, Gaigalas AK, Vilker VL (1997) J Phys Chem B 101:9250–9262

    Article  Google Scholar 

  35. Posset U, Löcklin E, Thull R, Kiefer W (1998) J Biomed Mater Res 40:640–645

    Article  Google Scholar 

  36. Rehman I, Bonfield W (1997) Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med 8:1–4

    Article  Google Scholar 

  37. Garcia F, Arias JL, Mayor B, Pou J, Rehman I, Knowles J, Best S, Leon B, Perez-Amor M, Bonfield W (1998) J Biomed Mater Res 43:69–76

    Article  Google Scholar 

  38. Ulian G, Valdre G, Corno M, Ugliengo P (2013) Am Miner 98:752–759

    Article  Google Scholar 

  39. Rapacz-Kmita A, Paluszkiewicz C, Slosarczyk A, Paszkiewicz Z (2005) FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J Mol Struct 744:653–656

  40. Alshemary AZ, Goh YF, Shakir I, Hussain R (2015) Synthesis, characterization and optical properties of chromium doped β-Tricalcium phosphate . Ceram Int 41:1663–1669

    Article  Google Scholar 

  41. Uysal I, Severcan F, Evis Z (2013) Ceram Int 39:7727–7733

    Article  Google Scholar 

  42. Malakauskaite-Petruleviciene M, Stankeviciute Z, Niaura G, Garskaite E, Beganskiene A, Kareiva A (2016) Characterization of sol–gel processing of calcium phosphate thin films on silicon substrate by FTIR spectroscopy. Vib Spectrosc 85:16–21

    Article  Google Scholar 

  43. Enderle JD, Blanchard MS, Bronzino DJ (2005) Introduction to biomedical engineering. Elsevier, Amsterdam, p 271

    Google Scholar 

  44. Hadzi D (1965) Molecular spectroscopy VIII. Pure Appl Chem 11(3-4):435–454

    Article  Google Scholar 

  45. Rocha JHG, Lemos AF, Agathopoulos S, Valhrio P, Kannan S, Oktar FN et al. (2005) Scaffolds for bone restoration from cuttlefish. Bone 37:850–857

    Article  Google Scholar 

Download references

Acknowledgements

A part of this work was supported by Adiyaman University under project no; AMYOBAP/2014-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali İhsan Kaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirel, M., Aksakal, B. & Kaya, A.İ. The effect and characterization of newly synthesized SrBr2 reinforced bone grafts on structure and cell viability. J Sol-Gel Sci Technol 82, 602–610 (2017). https://doi.org/10.1007/s10971-017-4314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4314-2

Keywords

Navigation