Skip to main content
Log in

Room-temperature magnetoelectric coupling study of multiferroic (1−x)(0.7BiFeO3-0.3Bi0.5Na0.5TiO3)-xCoFe2O4 ceramics

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of (1−x)(0.7BiFeO3-0.3Bi0.5Na0.5TiO3)-xCoFe2O4 ceramics have been synthesized using the sol–gel method. Structural, microstructural, and multiferroic properties of the samples have been investigated. Magnetoelectric coupling has been also measured at room temperature. The structural and microstructural results show that perovskite 0.7BiFeO3-0.3Bi0.5Na0.5TiO3 and spinel CoFe2O4 can coexist in the ceramics without any observable impurities. The ceramics exhibit distinct ferromagnetic characteristics at room temperature. The dielectric constant and dielectric loss have been also studied as the function of frequency and temperature. The temperature dependence of dielectric properties displays a typical relaxor-like behavior at the temperature range of 150–300 °C. Due to magnetoelectric coupling, the dielectric anomaly at about 340 °C and the peak near 510 °C are respectively related to the ferroelectric transition of Bi0.5Na0.5TiO3 and magnetic transition of CoFe2O4. Impedance properties show the segment of arc at room temperature and the nearly perfect semicircle at higher temperature. Both Z′ and Z″ present regular change with the content of CoFe2O4. The room-temperature multiferroic properties of these new ceramics may be suitable for storage device applications.

Graphical Abstract

Variation of magnetoelectric coupling coefficient αE with the applied magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Godara P, Agarwal A, Ahlawat N, Sanghi S, Kaswan K (2016) Effect of doping of vanadium ions on crystal structure, dielectric and magnetic properties of Bi0.8Ba0.2FeO3 multiferroic. J Magn Magn Mater 406:76

    Article  Google Scholar 

  2. Popa M, Crespo D, Calderon-Moreno JM (2007) Synthesis and structural characterization of single-phase BiFeO3 powders from a polymeric precursor. J Am Ceram Soc 90:2723

    Article  Google Scholar 

  3. Khomchenko VA, Paixão JA (2016) Effect of Nb doping on the morphology and multiferroic behavior of Bi0.9La0.1FeO3 ceramics. Mater Lett 169:180

    Article  Google Scholar 

  4. Ma Y, Xing WY, Chen JY, Bai YL, Zhao SF, Zhang H (2016) The influence of Er, Ti co-doping on the multiferroic properties of BiFeO3 thin films. Appl Phys A 122:63

    Article  Google Scholar 

  5. Zhu WM, Guo HY, Ye ZG (2008) Structural and magnetic characterization of multiferroic (BiFeO3)1-x (PbTiO3) x solid solution. Phys Rev B 78:014401

    Article  Google Scholar 

  6. Ma ZZ, Tian ZM, Li JQ, Wang CH, Huo SX, Duan HN, Yuan SL (2011) Enhanced polarization and magnetization in multiferroic (1-x)BiFeO3-xSrTiO3 solid solution. Solid State Sci 13:2196

    Article  Google Scholar 

  7. Hang QM, Xing ZB, Zhu XH, Yu M, Song Y, Zhu JM, Liu ZG (2012) Dielectric properties and related ferroelectric domain configurations in multiferroic BiFeO3-BaTiO3 solid solutions. Ceram Int 38S:S411

    Article  Google Scholar 

  8. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693

    Article  Google Scholar 

  9. Tian ZM, Zhang YS, Yuan SL, Wu MS, Wang CH, Ma ZZ, Huo SX, Duan HN (2012) Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3-Bi0.5Na0.5TiO3 solid solution. Mat Sci Eng B 177:74

    Article  Google Scholar 

  10. Hieno A, Sakamoto W, Moriya M, Yogo T (2011) Synthesis of BiFeO3-Bi0.5Na0.5TiO3 thin films by chemical solution deposition and their properties. Jpn J Appl Phys 50:09NB04

    Article  Google Scholar 

  11. Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J Appl Phys 103:031101

    Article  Google Scholar 

  12. Kanamadi CM, Kim JS, Yang HK, Moon BK, Choi BC, Jeong JH (2009) Synthesis and characterization of CoFe2O4-Ba0.9Sr0.1TiO3 magnetoelectric composites with dielectric and magnetic properties. Appl Phys A 97:575

    Article  Google Scholar 

  13. Wang LG, Zhu CM, Luo H, Yuan SL (2015) Studies on room temperature multiferroic properties of xBi0.5Na0.5TiO3-(1-x)NiFe2O4 ceramics. J Electroceram 35:59

    Article  Google Scholar 

  14. Verma KC, Singh VP, Ram M, Shah J, Kotnala RK (2011) Structural, microstructural and magnetic properties of NiFe2O4, CoFe2O4 and MnFe2O4 nanoferrite thin films. J Magn Magn Mater 323:3271

    Article  Google Scholar 

  15. Zachariasz P, Kulawik J, Guzdek P (2015) Preparation and characterization of the microstructure, dielectric and magnetoelectric properties of multiferroic Sr3CuNb2O9-CoFe2O4 ceramics. Mater Design 86:627

    Article  Google Scholar 

  16. Zheng H, Wang J, Mohaddes-Ardabili L, Wuttig M, Salamanca-Riba L, Schlom DG, Ramesh R (2004) Three-dimensional heteroepitaxy in self-assembled BaTiO3-CoFe2O4. Appl Phys Lett 85:2035

    Article  Google Scholar 

  17. Wu XB, Cai W, Kan Y, Yang P, Liu YF, Bo HF, Lu XM, Zhu JS (2009) Multiferroic properties of CoFe2O4/PbZr0.52Ti0.48O3 composite ceramics. Ferroelectrics 380:48

    Article  Google Scholar 

  18. Zhu CM, Wang LG, Tian ZM, Luo H, Bao DLGC, Yin CY, Huang S, Yuan SL (2016) Effect of annealing temperature on the multiferroic properties of 0.7BiFeO3-0.3Bi0.5Na0.5TiO3 solid solution prepared by sol-gel method. Ceram Int 42:3930

    Article  Google Scholar 

  19. Roongtao R, Baitahe R, Vittayakorn N, Seeharaj P, Vittayakorn WC (2014) Influence of Mn doping on the magnetic properties of CoFe2O4. Ferroelectrics 459:119

    Article  Google Scholar 

  20. Sharma R, Singh V, Kotnala RK, Tandon RP (2015) Investigation on the effect of ferrite content on the multiferroic properties of (1-x)Ba0.95Sr0.05TiO3-(x)Ni0.7Zn0.2Co0.1Fe2O4 ceramic composite. Mater Chem Phys 160:447

    Article  Google Scholar 

  21. Chen W, Wang ZH, Zhu W, Tan OK (2009) Ferromagnetic, ferroelectric and dielectric properties of Pb(Zr0.53Ti0.47)O3/CoFe2O4 multiferroic composite thick films. J Phys D: Appl Phys 42:075421

    Article  Google Scholar 

  22. Chandrasekhar KD, Das AK, Venimadhav A (2012) Spin glass behavior and extrinsic origin of magnetodielectric effect in non-multiferroic La2NiMnO6 nanoparticles. J Phys: Condens Matter 24:376003

    Google Scholar 

  23. Lu ZL, Gao PZ, Ma RX, Xu J, Wang ZH, Rebrov EV (2016) Structural, magnetic and thermal properties of one-dimensional CoFe2O4 microtubes. J Alloys Compd 665:428

    Article  Google Scholar 

  24. Barick BK, Choudhary RNP, Pradhan DK (2013) Dielectric and impedance spectroscopy of zirconium modified (Na0.5Bi0.5)TiO3 ceramics. Ceram Int 39:5695

    Article  Google Scholar 

  25. Yang HB, Zhang G, Chen HY, Li HM, Li Z (2015) Electrical, magnetic and magnetoelectric properties of 0.6BaTiO3-0.4BiFeO3/CoFe2O4 particulate composites. J Mater Sci: Mater Electron 26:3370

    Google Scholar 

  26. Liu YW, Pu YP, Zhang PP, Zhao JJ, Wu YR, Luo YJ (2015) Maxwell-Wanger/Debye effects and complex impedance studies on Bi4Ti3O12-0.04Fe2O3 ceramics. Ferroelectrics 487:68

    Article  Google Scholar 

  27. Fiebig M (2005) Revival of the magnetoelectric effect. J Phy D: Appl Phys 38:R123

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11474111). We would like to thank the staff of Analysis Center of HUST for their assistance in various measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Yuan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

L. G. Wang and C. M. Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhu, C., Chen, L. et al. Room-temperature magnetoelectric coupling study of multiferroic (1−x)(0.7BiFeO3-0.3Bi0.5Na0.5TiO3)-xCoFe2O4 ceramics. J Sol-Gel Sci Technol 82, 184–192 (2017). https://doi.org/10.1007/s10971-016-4296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4296-5

Keywords

Navigation