Skip to main content
Log in

Green synthesis of hausmannite nanocrystals and their photocatalytic dye degradation and antimicrobial studies

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A simple and green route to synthesize hausmannite nanocrystals using tannic acid was presented in this work. Formation mechanism of Mn3O4 nanoparticles (NP’s) was illustrated. The Mn3O4 NP’s were characterized by X-ray powder diffraction studies (XRPD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), and high-resolution transmission electron microscopy. XRPD confirms the formation of Mn3O4 NP’s and the observation of peak at 632.81 cm−1 in Raman spectroscopy confirms the same. Mixed valency of Mn3O4 was evidenced from XPS. Also surface functionalization was evidenced by FT-IR and XPS measurements. The obtained NP’s are effective in degradation of tested organic pollutants methyl orange and bromophenol blue. About 90 % degradation in methyl orange and 80 % degradation in bromophenol blue were observed within 10 min using Mn3O4 NP’s. These NP’s show good antimicrobial activity against both tested gram-positive (Bacillus subtilis 168) and gram-negative (Escherichia coli K12) bacterias. The antibacterial activity of obtained Mn3O4 Np’s was found high in E. coli K12 than in B. subtilis 168.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moggridge GD, Rayment T, Lambert RM (1992) J Catal 134:242–252

    Article  Google Scholar 

  2. Sanchez L, Farcy J, Tirado J (1996) J Mater Chem 6:37–39

    Article  Google Scholar 

  3. Wang N, Guo L, He L, Cao X, Chen C, Wang R, Yang S (2007) Small 3:606–610

    Article  Google Scholar 

  4. Li Y, Tan H, Yang X-Y, Goris B, Verbeeck J, Bals S, Colson P, Cloots R, Van Tendeloo G, Su B-L (2011) Small 7:475–483

    Article  Google Scholar 

  5. Davar F, Salavati-Niasari M, Mir N, Saberyan K, Monemzadeh M, Ahmadi E (2010) Polyhedron 29:1747–1753

    Article  Google Scholar 

  6. Giovannelli F, Autret-Lambert C, Mathieu C, Chartier T, Delorme F, Seron A (2012) J Solid State Chem 192:109–112

    Article  Google Scholar 

  7. Apte SK, Naik SD, Sonawane RS, Kale BB, Pavaskar N, Mandale AB, Das BK (2006) Mater Res Bull 41:647–654

    Article  Google Scholar 

  8. Gunalan S, Sivaraj R, Rajendran V (2012) Prog Nat Sci Mater Int 22:693–700

    Article  Google Scholar 

  9. Suresh D, Nethravathi PC, Udayabhanu H, Rajanaika H, Nagabhushana H, Sharma SC (2015) Mater Sci Semicond Proc 31:446–454

    Article  Google Scholar 

  10. Sharma JK, Srivastava P, Ameen S, Shaheer Akhtar M, Singh G, Yadava S (2016) J Colloid Interface Sci 472:220–228

    Article  Google Scholar 

  11. Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY (2010) Arab J Chem 3:43–53

    Article  Google Scholar 

  12. Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) Curr Sci 97:1055–1059

    Google Scholar 

  13. Kausalya M, Narasimha Rao GM (2015) Antimicrobial activity of marine algae. J Algal Biomass Util 6:78–87

    Google Scholar 

  14. Kavangh F (1992) Analytical microbiology-II. Academic Press, New York, p 241

    Google Scholar 

  15. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Oxford Pergamon Press, Oxford, p 286

    Google Scholar 

  16. Song R, Feng S, Wang H, Hou C (2013) J Solid State Chem 202:57–60

    Article  Google Scholar 

  17. Zuo J, Xu C, Liu Y, Qian Y (1998) Nanostruct Mater 10:1331–1335

    Article  Google Scholar 

  18. Jin G, Xiao X, Li S, Zhao K, Wu Y, Sun D, Wang F (2015) Electrochim Acta 178:689–698

    Article  Google Scholar 

  19. Yin S, Wang X, Mou Z, Wu Y, Huang H, Zhu M, Du Y, Yang P (2014) Phys Chem Chem Phys 16:11289–11296

    Article  Google Scholar 

  20. Min Y, Zhang K, Chen Y, Zhang Y (2011) Chem Eng J 175:76–83

    Article  Google Scholar 

  21. Makhal A, Sarkar S, Pal SK (2012) Inorg Chem 51:10203–10210

    Article  Google Scholar 

  22. Jain N, Bhargava A, Panwar J (2014) Chem Eng J 243:549–555

    Article  Google Scholar 

Download references

Acknowledgments

K. Mohan Kumar, S. Godavarthi, and M. Mahendhiran are thankful to the postdoctoral scholarship from Direccion General de Asuntos del Personal Academico—Universidad Nacional Autonoma de Mexico (DGAPA-UNAM). We are thankful to Dr. Ramón Peña Sierra from Cinvestav-IPN, for his support in Raman spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Godavarthi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan Kumar, K., Godavarthi, S., Vázquez Vélez, E. et al. Green synthesis of hausmannite nanocrystals and their photocatalytic dye degradation and antimicrobial studies. J Sol-Gel Sci Technol 80, 396–401 (2016). https://doi.org/10.1007/s10971-016-4136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4136-7

Keywords

Navigation