Skip to main content
Log in

Directing photocatalytic and photoelectrocatalytic performance of TiO2 by using TEA and NH4F as doping precursors

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Triethylamine (TEA) and NH4F-modified TiO2 powders and thin films were prepared by combining sol–gel and hydrothermal processes. Modification with TEA results in increased specific surface area and induces energy states below the conduction band of TiO2. On the other hand, the use of NH4F decreases the band-gap, displacing the valence band. Employing radical-scavenging agents, it was found that formation of O *2 is preferred in TEA-modified TiO2, whereas generation of both O *2 and OH* results from simultaneous modification. Furthermore, the photocatalytic degradation rate was directly proportional to their specific surface area. However, this trend was reversed in a photoelectrocatalytic cell, due to the fact that the photogenerated electrons are rapidly transported to the rear contact, which restrains their transfer to the dissolved oxygen to generate O *2 . Therefore, the presence of OH* radicals and direct charge transfer processes appears to play a key role in the photoelectrocatalytic process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Egerton TA (2011) Does photoelectrocatalysis by TiO2 work? J Chem Technol Biotechnol 86:1024–1031

    Article  Google Scholar 

  2. Zheng Z, Zhao J, Yuan Y, Liu H, Yang D, Sarina S, Zhang H, Waclawika ER, Zhu H (2013) Tuning the surface structure of nitrogen-doped TiO2 nanofibres—an effective method to enhance photocatalytic activities of visible-light-driven green synthesis and degradation. Chem Eur J 19:5731–5741

    Article  Google Scholar 

  3. Chen Q, Ma W, Chen C, Ji H, Zhao J (2012) Anatase TiO2 mesocrystals enclosed by (001) and (101) facets: synergistic effects between Ti3+ and facets for their photocatalytic performance. Chem Eur J 18:12584–12589

    Article  Google Scholar 

  4. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229

    Article  Google Scholar 

  5. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297

    Article  Google Scholar 

  6. Ma X, Wu Y, Lu Y, Xu J, Wang Y, Zhu Y (2011) Effect of compensated codoping on the photoelectrochemical properties of anatase TiO2 photocatalyst. J Phys Chem 115:16963–16969

    Google Scholar 

  7. Minero C, Mariella G, Maurino V, Vione D, Pelizzetti E (2000) Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide–fluoride system. Langmuir 16:8964–8972

    Article  Google Scholar 

  8. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal 161:205–212

    Article  Google Scholar 

  9. Asahi R, Morikawa T, Ohwaki K, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  Google Scholar 

  10. Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. J Phys Chem 107:5483–5486

    Article  Google Scholar 

  11. Sathish M, Viswanathan B, Viswanath R (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 17:6349–6353

    Article  Google Scholar 

  12. Huang DG, Liao SJ, Liu JM, Dang Z, Petrik L (2006) Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel–solvothermal method. J Photochem Photobiol, A 184:282–288

    Article  Google Scholar 

  13. Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S (2006) Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates. Electrochim Acta 51:2076–2087

    Article  Google Scholar 

  14. Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Czoska AM, Paganini MC, Giamello E (2008) Density functional theory and electron paramagnetic resonance study on the effect of N–F codoping of TiO2. Chem Mater 20:3706–3714

    Article  Google Scholar 

  15. Mori K, Maki K, Kawasaki S, Yuan S, Yamashita H (2008) Hydrothermal synthesis of image photocatalysts in the presence of image and their application for degradation of organic compounds. J Chem Eng Sci 63:5066–5070

    Article  Google Scholar 

  16. Gao H, Zhou J, Dai D, Qu Y (2009) Photocatalytic activity and electronic structure analysis of N-doped anatase TiO2: a combined experimental and theoretical study. Chem Eng Technol 32:867–872

    Article  Google Scholar 

  17. Yu J, Wang W, Cheng B, Su BL (2009) Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J Phys Chem C 113:6743–6750

    Article  Google Scholar 

  18. Yin M, Li Z, Kou J, Zou Z (2009) Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system. Environ Sci Technol 43:8361–8366

    Article  Google Scholar 

  19. Li Q, Shang JK (2009) Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Environ Sci Technol 43:8923–8929

    Article  Google Scholar 

  20. Pelaez M, Nolan N, Pillai S, Seery MK, Falaras P (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  Google Scholar 

  21. Giannakas AE, Seristatidou E, Deligiannakis Y, Konstantinou I (2013) Photocatalytic activity of N-doped and N–F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: an EPR study. Appl Catal B 132–133:460–468

    Article  Google Scholar 

  22. Hamilton JWJ, Byrne JA, Dunlop PSM, Dionysiou DD, Pelaez M, O’Shea K, Synnott D, Pillai SC (2014) Evaluating the mechanism of visible light activity for N, F-TiO2 using photoelectrochemistry. J Phys Chem C 118:12206–12215

    Article  Google Scholar 

  23. Dozzi MV, Artiglia L, Granozzi G, Ohtani B, Selli E (2014) Photocatalytic activity vs structural features of titanium dioxide materials singly doped or codoped with fluorine and boron. J Phys Chem 118:25579–25589

    Google Scholar 

  24. Samsudin EM, Abd Hamid SB, Juan JC, Basirun WJ, Centi G (2015) Enhanced of the intrinsic photocatalytic activity of TiO2 in the degradation of 1,3,5-triazine herbicides by doping with N, F. Chem Eng J 280(2015):330–343

    Article  Google Scholar 

  25. Li H, Hao Y, Lu H, Liang L, Wang Y, Qiu J, Shi X, Wang Y, Yao J (2015) A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method. Appl Surf Sci 344:112–118

    Article  Google Scholar 

  26. Zhang Y, Han C, Nadagouda MN, Dionysiou DD (2015) The fabrication of innovative single crystal N, F-codoped titanium dioxide nanowires with enhanced photocatalytic activity for degradation of atrazine. Appl Catal B 168–169:550–558

    Article  Google Scholar 

  27. He X, Aker WG, Pelaez M, Lin Y, Dionysiou DD, Hwang H (2016) Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: implication for field remediation. J Photochem Photobiol, A 314:81–92

    Article  Google Scholar 

  28. Wu D, Long M, Cai W, Chen C, Wu Y (2010) Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity. J Alloys Compd 502:289–295

    Article  Google Scholar 

  29. Téllez LA, Díaz FA (2010) Bachelor thesis: Síntesis de TiO2 dopado con nitrógeno con actividad fotocatalítica bajo luz visible. Universidad Industrial de Santander, Bucaramanga

    Google Scholar 

  30. Cuspoca JM, Páez YL, Bachelor thesis (2013) Evaluación del efecto del flúor como co-dopante del TiO2-N en el proceso fotoelectrocatalítico bajo luz visible de reducción de mercurio y oxidación de cianuro. Universidad Industrial de Santander, Bucaramanga, Colombia

  31. Acevedo-Peña P, Lartundo-Rojas L, González I (2013) Effect of pH on the barrier layer of TiO2 nanoporous films potentiostatically grown in aqueous media containing fluoride ions. J Electrochem Soc 160:291–297

    Article  Google Scholar 

  32. Acevedo-Peña P, Vazquez-Arenas J, Cabrera-Sierra R, Lartundo-Rojas L, González I (2013) Ti anodization in alkaline electrolyte: the relationship between transport of defects, film hydration and composition. J Electrochem Soc 160:277–284

    Article  Google Scholar 

  33. Acevedo-Peña P, Lartundo-Rojas L, González I (2013) Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. J Solid State Electrochem 17:2939–2947

    Article  Google Scholar 

  34. Li Y, Wang J, Yao H, Dang L, Li Z (2011) Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J Mol Catal A 334:116–122

    Article  Google Scholar 

  35. Ramírez-Santos A, Acevedo-Peña P, Córdoba-Tuta E (2014) Photo-assisted electrochemical copper removal from cyanide solutions using porous TiO2 thin film photo-anodes. Mater Res 17:69–77

    Article  Google Scholar 

  36. Peralta Y, Lizcano E, Laverde D, Acevedo-Peña P, Córdoba-Tuta E (2012) Formation of TiO2 photoanodes by simultaneous electrophoretic deposition of anatase and rutile particles for photoassisted electrolytic copper ions removal. Quim Nova 35:499–504

    Article  Google Scholar 

  37. Li X, Liu S (2008) Characterization of visible light response N–F codoped TiO2 photocatalyst prepared by acid catalyzed hydrolysis. Acta Phys Chem Sin 24:2019–2024

    Article  Google Scholar 

  38. Shankar K, Tep KC, Mor GK, Grimes CA (2006) An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. J Phys D Appl Phys 39:2361–2366

    Article  Google Scholar 

  39. Cheng B, Le Y, Yu J (2010) Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires. J Hazard Mater 177:971–977

    Article  Google Scholar 

  40. Lva K, Xianga Q, Yu J (2011) Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed 0 0 1 facets. Appl Catal B 104:275–281

    Article  Google Scholar 

  41. Paunovic P, Grozdanov A, Cesnovar A, Makreski P, Gentile G, Ranguelov B, Fidancevska E (2015) Characterization of nanoscaled TiO2 produced by simplified sol–gel method using organometallic precursor. J Eng Mater Technol 137:021003

    Article  Google Scholar 

  42. Xu CY, Zhang PX, Yan L (2001) Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spectrosc 32:862–865

    Article  Google Scholar 

  43. Wang J, Zhang P, Li X, Zhu J, Li H (2013) Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (0 0 1) facets. Appl Catal B 134:198–204

    Article  Google Scholar 

  44. Chainarong S, Sikong L, Pavasupre S, Niyomwas S (2011) Synthesis and characterization of nitrogen-doped TiO2 nanomaterials for photocatalytic activities under visible light. Energy Procedia 9:418–427

    Article  Google Scholar 

  45. Yu J, Su Y, Cheng B, Zhou M (2006) Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J Mol Catal A 258:104–112

    Article  Google Scholar 

  46. Saket-Oskoui M, Khatamian M, Nofouzi K, Yavari A (2014) Study on crystallinity and morphology controlling of titania using acrylamide gel method and their photocatalytic properties. Adv Powder Technol 25:1634–1642

    Article  Google Scholar 

  47. Senthilnathan J, Philip L (2010) Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem Eng J 161:83–92

    Article  Google Scholar 

  48. Bu X-Z, Zhang G-K, Gao Y-Y, Yang Y-Q (2010) Preparation and photocatalytic properties of visible light responsive N-doped TiO2/rectorite composites. Microporous Mesoporous Mater 136:132–137

    Article  Google Scholar 

  49. Jiang Y, Luo Y, Zhang F, Guo L, Ni L (2013) Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2 microspheres. Appl Surf Sci 273:448–456

    Article  Google Scholar 

  50. Yaghoubi H, Li Z, Chen Y, Ngo HT, Bhethanabotla VR, Joseph B, Ma S, Schlaf R, Takshi A (2015) Toward a visible light-driven photocatalyst: the effect of midgap-states-induced energy gap of undoped TiO2 nanoparticles. ACS Catal 5:327–335

    Article  Google Scholar 

  51. Pirzada BM, Mir NA, Qutub N, Mehraj O, Sabir S, Muneer M (2015) Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures. Mater Sci Eng, B 193:137–145

    Article  Google Scholar 

  52. Hojamberdiev M, Zhu G, Sujaridworakun P, Jinawath S, Liu P, Zhou J (2012) Visible-light-driven N–F-codoped TiO2 powders derived from different ammonium oxofluorotitanate precursors. Powder Technol 218:140–148

    Article  Google Scholar 

  53. Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449

    Article  Google Scholar 

  54. Chen X, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 15:5018–5019

    Article  Google Scholar 

  55. Patel N, Jaiswal R, Warang T, Scarduelli G, Dashora A, Ahuja BL, Kothari DC, Miotello A (2014) Efficient photocatalytic degradation of organic water pollutants using V–N-codoped TiO2 thin films. Appl Catal B 150:74–81

    Article  Google Scholar 

  56. Gyorgy E, Pino APD, Serra P, Morenza JL (2007) Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surf Coat Technol 173:265–270

    Article  Google Scholar 

  57. Ma T, Akiyama M, Abe E, Imai I (2005) High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett 5:2543–2547

    Article  Google Scholar 

  58. Chai JW, Yang M, Chen Q (2011) Effects of nitrogen incorporation on the electronic structure of rutile-TiO2. J Appl Phys 109:023707

    Article  Google Scholar 

  59. Petala A, Tsikritzis D, Kollia M, Ladas S, Kennou S, Kondarides DI (2014) Synthesis and characterization of N-doped TiO2 photocatalysts with tunable response to solar radiation. Appl Surf Sci 305:281–291

    Article  Google Scholar 

  60. Meng Y, Chen J, Wang Y, Ding H, Shan Y (2009) (N, F)-codoped TiO2 nanocrystals as visible light-activated photocatalyst. J Mater Sci Technol 25:73–76

    Google Scholar 

  61. Passalacqua R, Perathoner S, Centi G (2015) Use of modified anodization procedures to prepare advanced TiO2 nanostructured catalytic electrodes and thin film materials. Catal Today 251:121–131

    Article  Google Scholar 

  62. Zhao X, Liu M, Zhu Y (2007) Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films 515:7127–7134

    Article  Google Scholar 

  63. Lee H, Choi W (2002) Photocatalytic Oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36:3872–3878

    Article  Google Scholar 

  64. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

    Article  Google Scholar 

  65. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  Google Scholar 

  66. Serpone N, Emeline AV (2012) Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 3:673–677

    Article  Google Scholar 

  67. Spagnol V, Sutter E, Debiemme C, Cachet H, Baroux B (2009) EIS study of photo-induced modifications of nano-columnar TiO2 films. Electrochim Acta 54:1228–1232

    Article  Google Scholar 

  68. Acevedo-Peña P, González I (2013) TiO2 photoanodes prepared by cathodic electrophoretic deposition in 2-propanol: effect of the electric field and deposition time. J Solid State Electrochem 17:519–526

    Article  Google Scholar 

  69. Ramírez-Ortega D, Meléndez AM, Acevedo-Peña P, González I, Arroyo R (2014) Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim Acta 140:541–549

    Article  Google Scholar 

  70. Wang ZS, Li FY, Huang CH (2001) Photocurrent enhancement of hemicyanine dyes containing RSO3-group through treating TiO2 films with hydrochloric acid. J Phys Chem B 105:9210–9217

    Article  Google Scholar 

  71. Schwarz PF, Turro NJ, Bossmann SH, Braun AM, Duerr H (1997) A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions. J Phys Chem B 101:7127–7134

    Article  Google Scholar 

  72. Yin L, Niu J, Shen Z, Chen J (2010) Mechanism of reductive decomposition of pentachlorophenol by Ti-doped β-Bi2O3 under visible light irradiation. Environ Sci Technol 44:5581–5586

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from COLCIENCIAS (Project 1102-521-28875) and UIS (DIEF Ingenierías Fisicoquímicas, Project 9416).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Próspero Acevedo-Peña or Elcy María Córdoba-Tuta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellanos-Leal, E.L., Acevedo-Peña, P., Lartundo-Rojas, L. et al. Directing photocatalytic and photoelectrocatalytic performance of TiO2 by using TEA and NH4F as doping precursors. J Sol-Gel Sci Technol 80, 462–473 (2016). https://doi.org/10.1007/s10971-016-4135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4135-8

Keywords

Navigation