Skip to main content
Log in

Magnetic properties and photocatalytic activity of ZnFe2−x La x O4 nanoparticles synthesized by sol–gel autocombustion method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel autocombustion technique was employed to synthesize ZnFe2−x La x O4 (0 < x < 0.2) nanoparticles. Cation distribution among the tetrahedral and octahedral sites and optical properties is highly dependent on La substitution in the spinel structure which was examined by X-ray diffraction, Raman spectroscopy and diffuse reflectance spectroscopy. The ZnFe2−x La x O4 nanoparticles exhibited strong absorption in the visible region with the optical band gap calculated from Tauc’s plot in the range of 1.93–1.98 eV. Furthermore, the effects of La substitution on the photodegradation of the methyl orange (MO) under visible light were also studied. The degradation of MO dye was enhanced with increasing La3+ substitution from x = 0 to x = 0.2, which may be due to the higher redox potential of La3+ ion as compared to those of iron. Moreover, the magnetic measurements showed that the magnetization decreased from 7.06 to 2.35 emu/g with La additions, due to the reduction in the total magnetic moments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  Google Scholar 

  2. Zhao D, Chen C, Wang Y, Ma W, Zhao J, Rajh T et al (2008) Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: structure, interaction, and interfacial electron transfer. Environ Sci Technol 42:308–314

    Article  Google Scholar 

  3. Bhukal S, Shivali, Singhal S (2014) Magnetically separable copper substituted cobalt–zinc nano-ferrite photocatalyst with enhanced photocatalytic activity. Mater Sci Semicond Process 26:467–476

    Article  Google Scholar 

  4. Hong Y, Ren A, Jiang Y, He J, Xiao L, Shi W (2015) Sol–gel synthesis of visible-light-driven Ni(1x)Cu(x)Fe2O4 photocatalysts for degradation of tetracycline. Ceram Int 41:1477–1486

    Article  Google Scholar 

  5. Šutka A, Pärna R (2014) Photocatalytic activity of non-stoichiometric ZnFe2O4 under visible light irradiation. Phys Scr 89:044011

    Article  Google Scholar 

  6. Liu JP (2009) Nanoscale magnetic materials and applications, vol 1032. Springer, Berlin

    Book  Google Scholar 

  7. Harish KN, Bhojya HS, Naik PN, Naik PN, Prashanth Kumar, Viswanath R (2012) Synthesis, enhanced optical and photocatalytic study of Cd–Zn ferrites under sunlight. Catal Sci Technol 2:1033–1039

    Article  Google Scholar 

  8. Borhan AI, Samoila P, Hulea V, Iordan AR, Palamaru MN (2014) Effect of Al3 + substituted zinc ferrite on photocatalytic degradation of Orange I azo dye. J Photochem Photobiol A Chem 279:17–23

    Article  Google Scholar 

  9. Cao XB, Gu L, Lan XM, Zhao C, Yao D, Sheng WJ (2007) Spinel ZnFe2O4 nanoplates embedded with Ag clusters: preparation, characterization, and photocatalytic application. Mater Chem Phys 106:175–180

    Article  Google Scholar 

  10. Li XY, Hou Y, Zhao QD, Teng W, Hu XJ, Chen GH (2011) Capability of novel ZnFe2O4 nanotube arrays for simulated sunlight induced degradation of 4-chlorophenol. Chemosphere 82:581–586

    Article  Google Scholar 

  11. Sun S, Yang X (2012) Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Progr Nat Sci Mater Int 22:639–643

    Article  Google Scholar 

  12. Casbeer E, Sharma VK, Li XZ (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14

    Article  Google Scholar 

  13. Liu LJ, Zhang GL, Wang L, Huang T, Qin L (2011) Highly active S-modified ZnFe2O4 heterogeneous catalyst and its photo-fenton behavior under UV–visible irradiation. Ind Eng Chem Res 50:7219–7227

    Article  Google Scholar 

  14. Feng J, Wang Y et al (2015) Synthesis of magnetic ZnO/ZnFe2O4 by a microwave combustion method, and its high rate of adsorption of methylene blue. J Colloid Interface Sci 438:318–322

    Article  Google Scholar 

  15. Li XY, Hou Y, Zhao QD, Chen GH (2011) Synthesis and photoinduced charge transfer properties of ZnFe2O4–sensitized TiO2 nanotube-array electrode. Langmuir 27:3113–3120

    Article  Google Scholar 

  16. Li J, Liu Z, Zhu Z (2014) Magnetically separable ZnFe2O4, Fe2O3/ZnFe2O4 and ZnO/ZnFe2O4 hollow nanospheres with enhanced visible photocatalytic properties. RSC Adv 4:51302–51308

    Article  Google Scholar 

  17. Masoudpanah SM, Seyyed Ebrahimi SA, Derakhshani M, Mirkazemi SM (2014) Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel autocombustion method. J Magn Magn Mater 370:122–126

    Article  Google Scholar 

  18. Skolnick LP, Kondo S, Lavine LR (1958) An improved X-ray method for determining cation distribution in ferrites. J Appl Phys 29:198–203

    Article  Google Scholar 

  19. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767

    Article  Google Scholar 

  20. Wang Z, Schiferl D, Zhao Y, O’Neill HSC (2003) High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. J Phys Chem Solids 64:2517–2523

    Article  Google Scholar 

  21. Wang Z, Lazor P, Saxena SK, Artioli G (2002) High-pressure Raman spectroscopic study of spinel (ZnCr2O4). J Solid State Chem 165:165–170

    Article  Google Scholar 

  22. Maletin M, Moshopoulou EG et al (2007) Synthesis and structural characterization of In-doped ZnFe2O4 nanoparticles. J Eur Ceram Soc 27:4391–4394

    Article  Google Scholar 

  23. Xu SH, Shangguan WF, Yuan J, Shi JW, Chen MX (2007) Photocatalytic properties of bismuth titanate Bi12TiO20 prepared by co-precipitation processing. Mater Sci Eng, B 137:108–111

    Article  Google Scholar 

  24. Xu S, Feng D, Shangguan W (2009) Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst. J Phys Chem C 113:2463–2467

    Article  Google Scholar 

  25. Srivastava M, Ojhaa AK, Chaubeya BS, Maternyb A (2009) Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J Alloys Compd 481:515–519

    Article  Google Scholar 

  26. Yuan ZH, You W, Jia JH, Zhang LD (1998) Optical absorption red shift of the capped ZnFe2O4 nanoparticles. Chin Phys Lett 15:535–536

    Article  Google Scholar 

  27. Kislov N, Srinivasan SS, Emirov Yu, Stefanakos EK (2008) Optical absorption red and blue shifts in ZnFe2O4 nanoparticles. Mater Sci Eng, B 153:70–77

    Article  Google Scholar 

  28. He J, Guo R et al (2013) Characterization and visible light photocatalytic mechanism of size-controlled BiFeO3 nanoparticles. Mater Res Bull 48:3017–3024

    Article  Google Scholar 

  29. Costa RCC, Lelis MFF et al (2006) Novel active heterogeneous Fenton system based on Fe3−x M x O4 (Fe Co, Mn, Ni): the role of M2 + species on the reactivity towards H2O2 reactions. J Hazard Mater B 129:171

    Article  Google Scholar 

  30. Bhukal S, Bansal S, Singhal S (2014) Magnetic Mn substituted cobalt zinc ferrite systems: structural, electrical and magnetic properties and their role in photo-catalytic degradation of methyl orange azo dye. Phys B 445:48–55

    Article  Google Scholar 

  31. Feng J, Su L, Ma Y, Ren C, Guo Q, Chen X (2013) CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol. Chem Eng J 221:16–24

    Article  Google Scholar 

  32. Sepelak V, Baabe D et al (2003) Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J Magn Mater Magn 257:377–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Masoudpanah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoudpanah, S.M., Hasheminisari, M. & Ghasemi, A. Magnetic properties and photocatalytic activity of ZnFe2−x La x O4 nanoparticles synthesized by sol–gel autocombustion method. J Sol-Gel Sci Technol 80, 487–494 (2016). https://doi.org/10.1007/s10971-016-4101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4101-5

Keywords

Navigation