Skip to main content
Log in

Effect of Ti substitution on the electrochemical properties of LaCr1−x Ti x O3+0.5x (x = 0–0.15)

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Perovskite compound LaCr1−x Ti x O3+0.5x (x = 0–0.15) was synthesized from an EDTA-chelating precursor solution at T < 800 °C, a temperature lower than that of the conventional solid-state method. Structural properties were determined at room temperature using X-ray powder diffraction and the lattice parameter decreased with increasing proportion of Ti. LaCr1−x Ti x O3+0.5x was chemically stable under a H2 atmosphere at 900 °C. Both electrical and ionic conductivity increased with increasing proportion of doped Ti, indicative of a p-type semiconductor. An Arrhenius-like behavior was observed, and the optimized bulk electrical conductivity was 0.107 S cm−1 for LaCr0.85Ti0.15O3.075 at 850 °C. X-ray photoelectron spectra indicate that the effect of the concentration of charge carrier on conductivity is closely related to the oxidation states of ions. The maximum power density reaches as high as 210 mW cm−2 at 800 °C for SOFC with LaCr1−x Ti x O3+0.5x (x = 0.15) anode.

Graphical Abstract

Ti-substituted perovskite materials LaTi x Cr1−x O3+0.5x (x = 0–0.15) show enhanced electronic and ionic conductivity with increasing proportion of doped Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie K, Umezawa N, Zhang N, Reunchan P, Zhang Y, Ye J (2011) Energy Environ Sci 4:4211

    Article  Google Scholar 

  2. Mukhopadhyay M, Mukhopadhyay J, Basu RN (2013) Trans Indian Ceram Soc 72:145

    Article  Google Scholar 

  3. Ge X-M, Chan S-H, Liu Q-L, Sun Q (2012) Adv Energy Mater 2:1156

    Article  Google Scholar 

  4. O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley

  5. Sun C, Stimming U (2007) J Power Sources 171:247

    Article  Google Scholar 

  6. Adams ITA, Nease J, Tucker D, Barton PI (2013) Ind Eng Chem Res 52:3089

    Article  Google Scholar 

  7. Liu M, Choi Y, Yang L, Blinn K, Qin W, Liu P, Liu M (2012) Nano Energy 1:448

    Article  Google Scholar 

  8. Eigenbrodt BC, Pomfret MB, Steinhurst DA, Owrutsky JC, Walker RA (2011) J Phys Chem C 115:2895

    Article  Google Scholar 

  9. Mogensen D, Grunwaldt J-D, Hendriksen PV, Dam-Johansen K, Nielsen JU (2011) J Power Sources 196:25

    Article  Google Scholar 

  10. Choudhury A, Chandra H, Arora A (2013) Renew Sustain Energy Rev 20:430

    Article  Google Scholar 

  11. Srinivasan S (2010) Fuel cells: from fundamentals to applications, 1st edn. Springer, New York

    Google Scholar 

  12. Hajimolana SA, Hussain MA, Daud WMAW, Soroush M, Shamiri A (2011) Renew Sustain Energy Rev 15:1893

    Article  Google Scholar 

  13. Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Science 326:126

    Article  Google Scholar 

  14. Peng C, Wang B, Vincent A (2011) J Mater Sci Lett 47:227

    Article  Google Scholar 

  15. Huang K, Goodenough JB (1998) J Solid State Chem 136:274

    Article  Google Scholar 

  16. Suthirakun S, Xiao G, Ammal SC, Chen F, Zur Loye H-C, Heyden A (2014) J Power Sources 245:875

    Article  Google Scholar 

  17. Xu S, Li S, Yao W, Dong D, Xie K (2013) J Power Sources 230:115

    Article  Google Scholar 

  18. Huang Y-H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough JB (2009) Chem Mater 21:2319

    Article  Google Scholar 

  19. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs JM (2004) Nat Mater 3:17

    Article  Google Scholar 

  20. Kolotygin VA, Tsipis EV, Lü MF, Pivak YV, Yarmolenko SN, Bredikhin SI, Kharton VV (2013) Solid State Ionics 251:28

    Article  Google Scholar 

  21. Xu S, Dong D, Wang Y, Doherty W, Xie K, Wu Y (2014) J Power Sources 246:346

    Article  Google Scholar 

  22. McIntosh S, van den Bossche M (2011) Solid State Ionics 192:453

    Article  Google Scholar 

  23. Kolotygin VA, Tsipis EV, Ivanov AI, Fedotov YA, Burmistrov IN, Agarkov DA, Sinitsyn VV, Bredikhin SI, Kharton VV (2012) J Solid State Electrochem 16:2335

    Article  Google Scholar 

  24. Lü MF, Tsipis EV, Waerenborgh JC, Yaremchenko AA, Kolotygin VA, Bredikhin S, Kharton VV (2012) J Power Sources 206:59

    Article  Google Scholar 

  25. Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, Oxford

    Google Scholar 

  26. Lay E, Dessemond L, Gauthier G (2013) J Power Sources 221:149

    Article  Google Scholar 

  27. van den Bossche M, McIntosh S (2010) Chem Mater 22:5856

    Article  Google Scholar 

  28. Rahman HA, Muchtar A, Muhamad N, Abdullah H (2013) Mater Chem Phys 141:752

    Article  Google Scholar 

  29. Sun L, Lu J, Yin J-W, Yin Y-M, Ma Z-F (2013) Int J Inorg Mater 28:925

    Article  Google Scholar 

  30. Ding Z, Yang Z, Zhao D, Deng X, Ma G (2013) J Alloys Compd 550:204

    Article  Google Scholar 

  31. Du Z, Zhao H, Zhou X, Xie Z, Zhang C (2013) Int J Hydrogen Energy 38:1068

    Article  Google Scholar 

  32. Hashimoto T, Tsuzuki N, Kishi A, Takagi K, Tsuda K, Tanaka M, Oikawa K, Kamiyama K, Yoshida K, Tagawa H, Dokiya M (2000) Solid State Ionics 132:181

    Article  Google Scholar 

  33. Fu Q, Tietz F, Sebold D, Tao S, Irvine JTS (2007) J Power Sources 171:663

    Article  Google Scholar 

  34. Tao S, Irvine JTS (2003) Nat Mater 2:320

    Article  Google Scholar 

  35. Tao S, Irvine JTS (2004) J Electrochem Soc 151:A252

    Article  Google Scholar 

  36. Tao S, Irvine JTS (2006) Chem Mater 18:5453

    Article  Google Scholar 

  37. Yang Q-L, Kang S-Z, Chen H, Bu W, Mu J (2011) Desalination 266:149

    Article  Google Scholar 

  38. Wyckoff RWG (1923) Proc Natl Acad Sci 9:33

    Article  Google Scholar 

  39. Jiang SP, Liu L, Ong KP, Wu P, Li J, Pu J (2008) J Power Sources 176:82

    Article  Google Scholar 

  40. van der Heide PAW (2002) Surf Interface Anal 33:414

    Article  Google Scholar 

  41. Natile MM, Poletto F, Galenda A, Glisenti A, Montini T, Rogatis LD, Fornasiero P (2008) Chem Mater 20:2314

    Article  Google Scholar 

  42. Zhang Q, Lu J, Saito F (2002) Powder Technol 122:145

    Article  Google Scholar 

  43. Gunasekaran N, Bakshi N, Alcock CB, Carberry JJ (1996) Solid State Ionics 83:145

    Article  Google Scholar 

  44. Carvalho MD, Ramos T, Ferreira LP, Wattiaux A (2010) Solid State Sci 12:476

    Article  Google Scholar 

  45. Atuchin VV, Kesler VG, Pervukhina NV, Zhang Z (2006) J Electron Spectrosc Relat Phenom 152:18

    Article  Google Scholar 

  46. Pross A (1995) Theoretical and physical principles of organic reactivity. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

National Science Council (NSC98-3114-E-009-006, 99-3113-P-009-005) and the MOE ATU program supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Shen Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, CK., Tsai, CF. & Lee, CS. Effect of Ti substitution on the electrochemical properties of LaCr1−x Ti x O3+0.5x (x = 0–0.15). J Sol-Gel Sci Technol 78, 394–402 (2016). https://doi.org/10.1007/s10971-015-3951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3951-6

Keywords

Navigation