Skip to main content
Log in

Promotion of electrochemical performance by tailoring the surface of β-Ni(OH)2 nanosheets

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

β-Ni(OH)2 nanosheets with rough surface were synthesized in the presence of glycerol through the hydrolysis of nickel acetate under hydrothermal condition. During the growth of β-Ni(OH)2, glycerol functionalized as a modifier to interfere the ordered stacking of Ni(OH)2 layers, leading to the rough surface of nanosheets. The resulted large surface area guaranteed the effective interface reactions occurring between electrolyte ions and β-Ni(OH)2. As a result, the as-prepared β-Ni(OH)2 nanosheets presented promoted electrochemical performance. The material had a maximum specific capacitance of 2100 F g−1 at current density of 1.3 A g−1, which was close to its theoretical value. At high current density of 26.3 A g−1, it remained high specific capacitance of 1281 F g−1. After 2000 charge and discharge cycles, the material still remained 93.8 % of its initial specific capacitance. These results demonstrated that the material could be a promising candidate for application in supercapacitor.

Graphical Abstract

β-Ni(OH)2 nanosheets (b) prepared in the presence of glycerol present a much rougher surface than those (a) prepared without using glycerol. As a result, the former sample has much higher electrochemical performance than the other sample due to its increased surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  Google Scholar 

  2. Vangari M, Pryor T, Jiang L (2013) J Energy Eng 139:72–79

    Article  Google Scholar 

  3. Zhu JH, Jiang J, Liu JP, Ding RM, Ding H, Feng YM, Wei GM, Huang XT (2011) J Solid State Chem 184:578–583

    Article  Google Scholar 

  4. Xue JY, Ren WZ, Wang MM, Cui HT (2014) J Nanoparticle Res 16:2765

    Article  Google Scholar 

  5. Hahm MG, Leela A, Reddy M et al (2012) Nano Lett 12:5616–5621

    Article  Google Scholar 

  6. Jiang H, Ma J, Li CZ (2012) Chem Commun 48:4465–4467

    Article  Google Scholar 

  7. Chen XA, Chen XH, Zhang FQ, Yang Z, Huang SM (2013) J Power Sources 243:555–561

    Article  Google Scholar 

  8. Lu ZY, Yang Q, Zhu W, Chang Z, Liu JF, Sun XM, Evans DG, Duan X (2012) Nano Res 5:369–378

    Article  Google Scholar 

  9. Jiang H, Ma J, Li CZ (2012) Chem Commun 48:4465–4467

    Article  Google Scholar 

  10. Mehdizadeh R, Sanati S, Saghatforoush LA (2013) Res Chem Intermed 41:2071–2079

    Article  Google Scholar 

  11. Ren YM, Wang L, Dai ZJ, Huang XK, Li JJ, Chen N, Gao J, Zhao HL, Sun XM, He XM (2012) Int J Electrochem Sci 7:12236–12243

    Google Scholar 

  12. Liang ZH, Zhu YJ, Hu XL (2004) J Phys Chem B 108:3488–3491

    Article  Google Scholar 

  13. Aghazadeh M, Ghaemi M, Sabour B, Dalvand S (2014) J Solid State Electrochem 18:1569–1584

    Article  Google Scholar 

  14. Xu LP, Ding YS, Chen CH, Zhao LL, Rimkus C, Joesten R, Suib SL (2008) Chem Mater 20:308–316

    Article  Google Scholar 

  15. Lee JW, Ko JM, Kim JD (2011) J Phys Chem C 115:19445–19454

    Article  Google Scholar 

  16. Yang DN, Wang RM, He MS, Zhang J, Liu ZF (2005) J Phys Chem B 109:7654–7658

    Article  Google Scholar 

  17. Cui HT, Xue JY, Ren WZ, Wang MM (2014) J Nanoparticle Res 16:2601

    Article  Google Scholar 

  18. Wang MM, Ren WZ, Zhao YN, Liu Y, Cui HT (2013) J Nanopart Res 15:1849

    Article  Google Scholar 

  19. Lu ZY, Chang Z, Zhu W, Sun XM (2011) Chem Commun 47:9651–9653

    Article  Google Scholar 

  20. Patil UM, Gurav KV, Fulari VJ, Lokhande CD, Joo OS (2009) J Power Sources 188:338–342

    Article  Google Scholar 

  21. Dubal DP, Fulari VJ, Lokhande CD (2012) Microporous Mesoporous Mater 151:511–516

    Article  Google Scholar 

  22. Aghazadeh M, Golikand AN, Ghaemi M (2011) Int J Hydrogen Energy 36:8674–8679

    Article  Google Scholar 

  23. Hu BL, Qin XY, Asiri AM, Alamry KA, Al-Youbi AO, Sun XP (2013) Electrochim Acta 107:339–342

    Article  Google Scholar 

  24. Lakshmi V, Ranjusha R, Vineeth S, Nair SV, Balakrishnan A (2014) Colloids Surf A 457:462–468

    Article  Google Scholar 

  25. Wang Y, Gai SL, Li CX, He F, Zhang ML, Yan YD, Yang PP (2013) Controlled synthesis and enhanced supercapacitor performance of uniform pompon-like β-Ni(OH)2 hollow microspheres. Electrochim Acta 90:673–681

    Article  Google Scholar 

  26. Mondal C, Ganguly M, Manna PK, Yusuf SM, Pal T (2013) Langmuir 29:9179–9187

    Article  Google Scholar 

  27. Khan Y, Hussain S, Söderlind F, Käll PO, Abbasi MA, Durrani SK (2012) Mater Lett 69:37–40

    Article  Google Scholar 

  28. Wang B, Chen JS, Wang ZY, Madhavi S, Lou XW (2012) Adv Energy Mater 2:1188–1192

    Article  Google Scholar 

  29. Nai JW, Wu JL, Guo L, Yang SH (2012) Cryst Growth Des 12:2653–2661

    Article  Google Scholar 

  30. Jiang H, Zhao T, Li CZ, Ma J (2011) J Mater Chem 21:3818–3823

    Article  Google Scholar 

  31. Xu J, Gu XF, Cao JY, Wang WC, Chen ZD (2012) J Solid State Electrochem 16:2667–2674

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Ma, W., Wang, L. et al. Promotion of electrochemical performance by tailoring the surface of β-Ni(OH)2 nanosheets. J Sol-Gel Sci Technol 78, 120–125 (2016). https://doi.org/10.1007/s10971-015-3934-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3934-7

Keywords

Navigation