Skip to main content
Log in

Hydrophobic silica aerogel derived from wheat husk ash by ambient pressure drying

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica aerogels from wheat husk ash (WHA) were prepared via a sol–gel process by ambient pressure drying. Silica was extracted from WHA by NaOH solution to form sodium silicate, which was used as precursor for aerogels. Silica wet gels were synthesized by resin-exchange-alkali-catalysis of the sodium silicate solution, followed by solvent exchange with ethanol (EtOH) and hexane in turn. Consequently, a mixture of trimethylchlorosilane, EtOH and hexane was used for surface modification of the wet gels in order to obtain hydrophobic silica aerogels. The density, pore structure, hydrophobic property and thermal insulation property of the obtained silica aerogels were investigated in detail. The results show that the formation of silica aerogels can be successfully realized at a SiO2/H2O weight ratio varying from 0.065 to 0.167. Silica aerogels possess a desirable pore structure with a surface area ranging from 513 ± 5 to 587 ± 6 m2/g, a pore volume from 2.3 ± 0.3 to 4.0 ± 0.1 cm3/g and a pore size from 9 ± 2 to 15 ± 1 nm, an outstanding hydrophobic property with a water contact angle of 147 ± 0.1° and a distinguished thermal insulation property with a low thermal conductivity ranging from 0.009 ± 0.0001 to 0.012 ± 0.0002 W/(m·K).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pajonk GM (1991) Appl Catal 72:217–266

    Article  Google Scholar 

  2. Liu H, Sha W, Cooper AT, Fan M (2009) Colloids Surf A 347:38–44

    Article  Google Scholar 

  3. Reim M, Korner W, Manara J, Korder S, Arduini-Schuster M, Ebert HP, Fricke J (2005) Sol Energy 79:131–139

    Article  Google Scholar 

  4. Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) Microporous Mesoporous Mater 160:167–173

    Article  Google Scholar 

  5. Vollet DR, de Sousa WAT, Donatti DA, Ibanez Ruiz A (2007) J Non-Cryst Solids 353:143–150

    Article  Google Scholar 

  6. Hegde ND, Rao AV (2006) Appl Surf Sci 253:1566–1572

    Article  Google Scholar 

  7. Wang J, Uma S, Klabunde KJ (2004) Microporous Mesoporous Mater 75:143

    Article  Google Scholar 

  8. Hrubesh LW, Coronado PR, Satcher JH Jr (2001) J Non-Cryst Solids 285:328

    Article  Google Scholar 

  9. Smirnova I, Mamic J, Arlt W (2003) Langmuir 19:8521

    Article  Google Scholar 

  10. Gao T, Bjorn PJ, Takeshi I, Arild G (2014) Appl Energy 128:27–34

    Article  Google Scholar 

  11. Neugebauer A, Chen K, Tang A, Allgeier A, Glicksman LR, Gibson LJ (2014) Energy Build 79:47–57

    Article  Google Scholar 

  12. Mohamad I, Pascal BH, Wurtz E, Achard P (2014) Build Environ 81:112–122

    Article  Google Scholar 

  13. Buratti C, Moretti E (2012) Appl Energy 98:396–403

    Article  Google Scholar 

  14. Michel AA, Nicholas L, Matthias MK (eds) Springer Science + Business Media, LLC 2011 SFC 20

  15. Sarawade PB, Kim J-K, Hilonga A, Kim HT (2010) Korean J Chem Eng 27:1301–1309

    Article  Google Scholar 

  16. Jullaphan O, Witoon T, Chareonpanich M (2009) J Mater Lett 63:1303–1306

    Article  Google Scholar 

  17. Hwang SW, Kim TY, Hyun SH (2010) Microporous Mesoporous Mater 130:295–302

    Article  Google Scholar 

  18. Setyawan H, Balgis R (2012) Asia-Pac J Chem Eng 7:448–454

    Article  Google Scholar 

  19. Tang Q, Wang T (2005) J Supercrit Fluids 35:91–94

    Article  Google Scholar 

  20. Li T, Wang T (2008) J Mater Chem Phys 112:398–401

    Article  Google Scholar 

  21. Nazriati N, Setyawan H, Affandi S et al (2014) J Non-Cryst Solids 400:6–11

    Article  Google Scholar 

  22. Gao GM, Liu DR, Zhou HF et al (2010) Powder Technol 197:283–287

    Article  Google Scholar 

  23. Shi F, Liu JX, Song K, Wang ZY (2010) J Non-Cryst Solids 356:2241–2246

    Article  Google Scholar 

  24. Meador MAB, Nguyen BN, Quade D, Scherzer CM, Vivod SL, Appl ACS (2010) Mater Interfaces 2:2162–2168

    Article  Google Scholar 

  25. Lin YF, Ko CC, Chen CH, Tung KL, Chang KS (2014) RSC Adv 4:1456–1459

    Article  Google Scholar 

  26. Harreld JH, Ebina T, Tsubo N et al (2002) J Non-Cryst Solids 298:241–251

    Article  Google Scholar 

  27. Rao AV, Haranath D (1999) Microporous Mesoporous Mater 30:267–273

    Article  Google Scholar 

  28. Einarsrud MA, Nilsen E, Rigacci A, Pajonk GM, Buathier S, Valette D, Durant M, Chevalier B, Nitz P, Ehrburger-Dolle F (2001) J Non-Cryst Solids 285:1–7

    Article  Google Scholar 

  29. Randall JP, Meador MAB, Jana SC, Appl ACS (2011) Mater Interfaces 3:613–626

    Article  Google Scholar 

  30. Yun S, Luo H, Gao Y (2014) RSC Adv 4:4535–4542

    Article  Google Scholar 

  31. Deng Z, Wang J, Wei J, Shen J, Zhou B, Chen L (2000) J Sol–Gel Sci Technol 19:677–680

    Article  Google Scholar 

  32. Harreld JH, Ebina T, Tsubo N, Stucky G, Non-Cryst J (2002) Solids 298:241–251

    Google Scholar 

  33. Phalippou J, Woignier T, Prassas M (1990) J Mater Sci 25:3111–3117

    Article  Google Scholar 

  34. Pajonk GM, Rao AV, Sawant BM, Parvathy NN (1997) J Non-Cryst Solids 209:40–50

    Article  Google Scholar 

  35. Tewari PH, Hunt AJ, Lofftus K (1985) Mater Lett 3:363–367

    Article  Google Scholar 

  36. Van Bommel MJ, de Haan AB (1995) J Non-Cryst Solids 186:78–82

    Article  Google Scholar 

  37. Reichenauer G, Scherer GW (2001) J Colloid Interface Sci 236:385

    Article  Google Scholar 

  38. Hwang SW, Jung HH, Hyun SH, Ahn YS (2007) J Sol–Gel Sci Technol 41:139

    Article  Google Scholar 

  39. Liao YD, Wu HJ, Ding YF, Yin S, Wang MR, Cao AM (2012) J Sol–Gel Sci Technol 63:445–456

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by National Natural Science Foundation of China (Grant Nos. 21171014, 50502002, 51402007), Scientific Research Common Program of the Beijing Municipal Commission of Education (Grant Nos. KZ201410005006, KM201210005012), State Key Laboratory of Solid Waste Reuse for Building Materials (Grant Nos. SWR-2014-010), Beijing Natural Science Foundation of China (Grant Nos. 2141001), and Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Wei or Zuo-Ren Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SW., Wei, Q., Cui, SP. et al. Hydrophobic silica aerogel derived from wheat husk ash by ambient pressure drying. J Sol-Gel Sci Technol 78, 60–67 (2016). https://doi.org/10.1007/s10971-015-3928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3928-5

Keywords

Navigation