Skip to main content
Log in

Electrical transport properties and temperature-dependent magnetization behavior of TbZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Substitution of TbZn in the series of Ca0.5Ba0.5−x Tb x Zn y Fe12−y O19 (x = 0.00–0.10; Y = 0.00–1.00) hexaferrites prepared by sol–gel method and their effect on the structural, electrical and magnetic properties are investigated. Temperature-dependent magnetic behaviors of selected samples are observed up to the magnetic field of 8T taken over temperature ranges from 4.2 to 373 K. The coercivity of the samples decreases from 2740 to 1370 Oe with increasing temperatures in a linear fashion up to 373 K. The grain boundaries and the associated pinning fields seem to have an important role in the magnetic behavior of these hexaferrites. The resistivity of ferrite decreases from 24 × 108 to 15 × 108 Ω-m. The temperature dependence of resistivity and mobility exhibits the degenerate-type semiconductor-like behavior of these ferrites. The dielectric constant and dielectric loss decrease and show relaxation behavior at higher frequencies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Albnese G, Dariu A, Licci F, Rinaldi S (1978) IEEE Trans Magn 14:710

    Article  Google Scholar 

  2. Kown HJ, Shin JY, Oh JH (1994) J Appl Phys 75:6109

    Article  Google Scholar 

  3. Naiden E, Maltsen V, Ryabtsen G (1990) Phys Stat Sol 120:209

    Article  Google Scholar 

  4. Yoon K, Lee D, Jung H, Yoon S (1992) J Mater Sci 27:2941

    Article  Google Scholar 

  5. Ding J, Maurice D, Miao WF, McCormick PG, Street R (1995) J Magn Magn Mater 150:417

    Article  Google Scholar 

  6. Mendoza Suarez G, Matutes-Aquino JA, Escalante-Garcıa JI, Mancha-Molinar H, Rıos-Jara D, Johal KK (2001) J Magn Magn Mater 223:55

    Article  Google Scholar 

  7. Abbas SM, Dixit AK, Chatterjee R, Goel TC (2007) J Magn Magn Mater 309:20

    Article  Google Scholar 

  8. Kulikowski J (1984) J Magn Magn Mater 41:56

    Article  Google Scholar 

  9. Ruan S, Xu B, Suo H, Wu F, Xiang S, Zhao M (2000) J Magn Magn Mater 212:175

    Article  Google Scholar 

  10. Stergiou CharalamposA, Manolakis Ioannis, Yioultsis TraianosV, Litsardakis George (2010) J Magn Magn Mater 322:1532

    Article  Google Scholar 

  11. Ramasamy DSR (1997) In: International conference electromagnetic interference and compatibility (INCEMIC-97), New Jersey 7B-7, p 459

  12. El Hiti MA (1996) J Magn Magn Mater 192:305

    Article  Google Scholar 

  13. Iqbal MJ, Ashiq MN, Gul IH (2010) J Magn Magn Mater 322(13):1720

    Article  Google Scholar 

  14. Valanzuela R (2005) Magnetic ceramics. Cambridge University Press, Cambridge

    Google Scholar 

  15. Iqbal MJ, Ashiq MN (2008) Chem Eng J 136:383

    Article  Google Scholar 

  16. Islam MU, Aen F, Niazi SB, Azhar Khan M, Ishaque M, Abbas T, Rana MU (2008) Mater Chem Phys 109:482–487

    Article  Google Scholar 

  17. Khan HM, Islam MU, Xu Y, Ashiq MN, Ali I, Asif Iqbal M, Ishaque M (2014) Ceram Intl 40:6487

    Article  Google Scholar 

  18. Khan HM, Islam MU, Xu Y, Iqbal MA, Ali I (2014) J Alloys Compd 589:258

    Article  Google Scholar 

  19. Sindhu S, Anantharaman MR, Thampi BP, Malini KA, Kurian P (2002) Bull Mater Sci 25:599

    Article  Google Scholar 

  20. Rezlescu N, Doroftei C, Rezlescu E, Popa PD (2006) Phys Status Solidi 15:3844

    Article  Google Scholar 

  21. Lechevallier L, Le Breton JM, Wang JF, Harris IR (2004) J Magn Magn Mater 269:192

    Article  Google Scholar 

  22. Che S, Wang J, Chen Q (2003) J Phys Condens Matter 15:L335

    Article  Google Scholar 

  23. Wagner TR (1998) J Solid State Chem 136:120

    Article  Google Scholar 

  24. Niasari MS, Davar F, Mahmoudi T (2009) Polyhedron 28:1455

    Article  Google Scholar 

  25. Iqbal MJ, Khan RA (2009) J Alloys Compd 478:847

    Article  Google Scholar 

  26. Che S, Wang J, Chen Q (2003) J Phys Condens Matter 15:L335

    Article  Google Scholar 

  27. Chang Sun, Kangning Sun, Pengfei Chui (2012) J Magn Magn Mater 324:802

    Article  Google Scholar 

  28. Kittle C (1996) An introduction to solid state physics, 5th edn. Wiley, New York

    Google Scholar 

  29. Abbas T, Islam MU, Chaudhry MA (1995) Mod Phys Lett B 9(22):1419

    Article  Google Scholar 

  30. Smit J, Wijn HPJ (1959) Ferrites. Wiley, New York

    Google Scholar 

  31. Verwey EJW, De Boer JH (1936) Rec Trans Chem Des Pays Bas 55:531

    Article  Google Scholar 

  32. Iqbal MJ, Farooq S (2009) Mater Chem Phys 118:308

    Article  Google Scholar 

  33. Ahmed MA, Ateia E, El-Dek SI (2003) Mater Lett 57:4256

    Article  Google Scholar 

  34. Rezlescu N, Rezlescu E, Pasnicu C, Craus ML (1994) J Phys Codens Matter 6:5707

    Article  Google Scholar 

  35. Shobana MK, Sankara S, Rajendran V (2009) Mater Chem Phys 113:10

    Article  Google Scholar 

  36. Murthy VRK, Shobanadri J (1976) Phys Status Solid A 36(2):133

    Article  Google Scholar 

  37. Wagner KW (1913) Ann Phys 40:817

    Article  Google Scholar 

  38. Sattar AA, Wafik AH, El-Sayed HM (2001) J Mater Sci 36:4703

    Article  Google Scholar 

  39. Hudson AS (1968) Marconi Rev 37:43

    Google Scholar 

  40. Park JK, Kim DY (1996) J Amer Ceram Soc 79(5):1405

    Article  Google Scholar 

  41. Zhu J, Tseng KJ (2000) C.F. IEEE Trans Magn 36:3408

    Article  Google Scholar 

  42. Habasaki J, Ngai KL, Non-Cryst J (2006) Solids 352:5170

    Google Scholar 

  43. Guillén JAD, Guillén MRD, Padmasree KP, Fuentes AF, Santamaría J, León C (2008) Solid State Ion 179:2160

    Article  Google Scholar 

  44. Asif Iqbal M, Islam M, Ali I, Khan HM, Mustafa G, Ali I (2013) Ceram Inter 39:1539

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Higher Education Commission of Pakistan for providing financial support under 5000 indigenous fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.M., Islam, M.U., Xu, Y. et al. Electrical transport properties and temperature-dependent magnetization behavior of TbZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites. J Sol-Gel Sci Technol 78, 151–158 (2016). https://doi.org/10.1007/s10971-015-3907-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3907-x

Keywords

Navigation