Skip to main content
Log in

Structural, magnetic, and microwave properties of NdZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Substitution of NdZn in Ca0.5Ba0.5−x Nd x Zn y Fe12−y O19, (x = 0.00–0.10; y = 0.00–1.00) hexaferrites prepared by sol–gel method is investigated, and their effect on the microwave, structural, and magnetic properties is reported. The XRD patterns reveal single-phase M-type hexaferrite structure. The lattice parameters were found to increase by the substitution of NdZn. The increase in lattice parameters is due to the difference in ionic sizes of the cations involved. The average grain size was found between 16 and 29 nm by Scherer formula and was also confirmed by SEM and TEM. Magnetic behavior of selected sample was observed up to a magnetic field of 8T taken at temperature ranges from 4.2 to 373 K. The coercivity of the sample decreased from 2300 to 1210 Oe with increasing temperatures in a linear fashion up to 373 K. The grain boundaries, and the associated pinning fields, seem to have a resolute role in the magnetic behavior of these hexaferrites. Microwave measurements of the ferrite sample have been measured in the frequency range 0.5–12 GHz. The frequency dispersion of ferrites is credited to the phenomenon of natural magnetic resonance and domain wall pinning.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Albnese G, Dariu A, Licci F, Rinaldi S (1978) IEEE Trans Magn MAG-14:710

    Article  Google Scholar 

  2. Kown HJ, Shin JY, Oh JH (1994) J Appl Phys 75:6109

    Article  Google Scholar 

  3. Naiden E, Maltsen V, Ryabtsen G (1990) Phys Status Solidi (a) 120:209

    Article  Google Scholar 

  4. Yoon K, Lee D, Jung H, Yoon S (1992) J Mater Sci 27:2941

    Article  Google Scholar 

  5. Ding J, Maurice D, Miao WF, McCormick PG, Street R (1995) J Magn Magn Mater 150:417

    Article  Google Scholar 

  6. Mendoza-Suarez G, Matutes-Aquino JA, Escalante-Garcıa JI, Mancha-Molinar H, Rıos-Jara D, Johal KK (2001) J Magn Magn Mater 223:55

    Article  Google Scholar 

  7. Abbas SM, Dixit AK, Chatterjee R, Goel TC (2007) J Magn Magn Mater 309:20

    Article  Google Scholar 

  8. Kulikowski J (1984) J Magn Magn Mater 41:56

    Article  Google Scholar 

  9. Ruan S, Xu B, Suo H, Wu F, Xiang S, Zhao M (2000) J Magn Magn Mater 212:175

    Article  Google Scholar 

  10. Stergiou CA, Manolakis I, Yioultsis TV, Litsardakis G (2010) J Magn Magn Mater 322:1532

    Article  Google Scholar 

  11. Ramasamy DSR (1997) International conference electromagnetic interference and compatibility INCEMIC-97. New Jersey 7B-7, 459

  12. Iqbal MJ, Ashiq MN, Gul IH (2010) J Magn Magn Mater 322:1720

    Article  Google Scholar 

  13. Hussain Shahid, Maqsood A (2007) J Magn Magn Mater 316:73–80

    Article  Google Scholar 

  14. Valanzuela R (2009) Magnetic ceramics. In: Chemistry of solid state materials, vol 4. Cambridge University Press, p 44

  15. Iqbal MJ, Ashiq MN (2008) Chem Eng J 136:383

    Article  Google Scholar 

  16. ASTM International, Standard test method for measuring the electromagnetic shielding effectiveness of planar materials, standard number D4935-10, 1 May 2010. doi:10.1520/D4935-10

  17. Rezlescu N, Doroftei C, Rezlescu E, Popa PD (2006) Phys Status Solidi 15:3844

    Article  Google Scholar 

  18. Iqbal MJ, Farooq S (2011) Mater Res Bull 46:662

    Article  Google Scholar 

  19. Popa PD, Rezlescu E, Doroftei C, Rezlescu N (2005) J Optoelectron Adv Mater 7:1553

    Google Scholar 

  20. Lechevallier L, Le Breton JM, Wang JF, Harris IR (2004) J Magn Magn Mater 269:192

    Article  Google Scholar 

  21. Che S, Wang J, Chen Q (2003) J Phys Condens Matter 15:L335

    Article  Google Scholar 

  22. Wagner TR (1998) J Solid State Chem 136:120

    Article  Google Scholar 

  23. Chang Sun, Kangning Sun, Pengfei Chui (2012) J Magn Magn Mater 324:802

    Article  Google Scholar 

  24. Costa ACFM, Tortella E, Morelli MR, Kiminami RHGA (2003) J Magn Magn Mater 256:174

    Article  Google Scholar 

  25. Khan HM, Islam MU, Ali I, Rana MA (2011) Mater Sci Appl 2:1083–1089

    Google Scholar 

  26. Smit J, Wijn HPJ (1959) Ferrites. Wiley, New York

    Google Scholar 

  27. Vasambekar PN, Kolekar CB, Vaigankar AS (1999) Mater Res Bull 34:863

    Article  Google Scholar 

  28. Lee SW, An SY, Shim I, Kim CS (2005) J Magn Magn Mater 290–291:231

    Article  Google Scholar 

  29. Rashad MM, Radwan M, Hessien MM (2008) J Alloys Compd 453:304

    Article  Google Scholar 

  30. Mu C, Chen N, Pan X, Shen X, Gu X (2008) Mater Lett 62:840

    Article  Google Scholar 

  31. Khan HM, Islam MU, Xu Y, Ashiq MN, Ali I, Iqbal MA, Ishaque M (2014) Ceram Int 40:6487–6493

    Article  Google Scholar 

  32. Khan HM, Islam MU, Xu Y, Iqbal MA, Ali I (2014) J Alloys Compd 589:258–262

    Article  Google Scholar 

  33. Iqbal MJ, Ashiq MN, Gul IH (2010) J Magn Magn Mater, 1720–1726

  34. Zhang HJ, Liu ZC, Yao X (2003) Mater Sci Eng B 97:160

    Article  Google Scholar 

  35. Haijun Z, Jia XL, Yao X et al (2004) J Rare Earth 22(3):338

    Google Scholar 

  36. Kim YJ, Kim SS (2002) IEEE Trans Magn 38(5):3108

    Article  Google Scholar 

  37. Gao B, Qiao L, Wang JB, Liu QF, Li FS, Feng J, Xue DS (2008) J Phys D Appl Phys 41:35005

    Article  Google Scholar 

  38. Tsutaoka T, Ueshima M, Tokunaga T (1995) J Appl Phys 78:3983

    Article  Google Scholar 

  39. Zhang XF, Guan PF, Dong XL (2010) Appl Phys Lett 96:102505

    Article  Google Scholar 

  40. Singh P, Babbar VK, Razdan A, Srivastava SL, Goel TC (2000) Mater Sci Eng B 78:70

    Article  Google Scholar 

  41. Wu MZ, Zhang YD, Hui S, Xiao TD, Ge SH, Hines WA, Budnick JI, Taylor GW (2002) Appl Phys Lett 23:4404

    Article  Google Scholar 

  42. Naito Y, Suetake K (1971) IEEE Trans Microw Theory Tech 19:65–72

    Article  Google Scholar 

  43. Michielssen E, Sajer J, Ranjithan S, Mittra R (1993) IEEE Trans Microw Theory Tech 41:1024

    Article  Google Scholar 

  44. Wessling B (1991) Polym Eng Sci 16:1200–1206

    Article  Google Scholar 

  45. Oikonomou A, Giannakopoulou T, Litsardakis G (2007) J Magn Magn Mater 316:e827–e830

    Article  Google Scholar 

  46. Feng Y, Qiu T (2012) J Alloys Compd 513:455–459

    Article  Google Scholar 

  47. Meena RS, Bhattachrya S, Chatterjee R (2010) Mater Des 31:3220–3226

    Article  Google Scholar 

  48. Qing Y, Zhou W, Luo F, Zhu D (2011) J Magn Magn Mater 323:600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.M., Islam, M.U., Xu, Y. et al. Structural, magnetic, and microwave properties of NdZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites. J Sol-Gel Sci Technol 75, 305–312 (2015). https://doi.org/10.1007/s10971-015-3700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3700-x

Keywords

Navigation