Skip to main content
Log in

Controlling kinetics of heterogeneous sol–gel solution for high-performance adhesive hybrid films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The strength of bonding at epoxy/SiO2 interface and its susceptibility to environmental degradation have profound impact on the lifetime and reliability of microelectronic devices. The incorporation of hybrid film at epoxy/SiO2 interfaces has been shown to alleviate this challenge, but the working time to produce these highly-adherent hybrid films on silicon has been limited to ~10 min. In this work we demonstrate that, by lowering sol–gel aging temperature to 5 °C, the processing window for producing highly-adherent hybrid films on silicon can be extended to more than 6 h. In addition to the extended processing time, an Arrhenius type relationship between sol–gel aging temperature and the optimal sol–gel aging time was observed, with an overall sol–gel reaction activation energy of approximately 2.03 eV/atom that includes both hydrolysis and polycondensation. The enhanced interfacial adhesion was explained in terms of the graded hybrid film structure as determined by X-ray photoelectron spectroscopy depth profiling. The work has significant implications for the successful integration of hybrid film strategy in device packaging technologies.

Graphical Abstract

Fracture energy of epoxy/hybrid-film/SiO2 structures with films prepared at different sol–gel aging times and temperatures. Black, red and blue curves show fracture energy as a function of sol-gel aging time for solutions aged at 25, 15 and 5 °C respectively. Grey dashed line indicates Gc = 60 J/m2 while orange dot-dash line represents the adhesion of epoxy/SiO2 interface in the absence of the hybrid film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lane MW, Snodgrass JM, Dauskardt RH (2001) Environmental effects on interfacial adhesion. Microelectron Reliab 41:1615–1624

    Article  Google Scholar 

  2. Sharratt BM, Wang LC, Dauskardt RH (2007) Anomalous debonding behavior of a polymer/inorganic interface. Acta Mater 55:3601–3609

    Article  Google Scholar 

  3. Kook S-Y, Dauskardt RH (2002) Moisture-assisted subcritical debonding of a polymer/metal interface. J Appl Phys 91:1293–1303

    Article  Google Scholar 

  4. Hohlfelder RJ, Maidenberg DA, Dauskardt RH (2001) Adhesion of benzocyclobutene-passivated silicon in epoxy layered structures. J Mater Res 16:243–255

    Article  Google Scholar 

  5. Snodgrass JM, Pantelidis D, Jenkins ML, Bravman JC, Dauskardt RH (2002) Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading. Acta Mater 50:2395–2411

    Article  Google Scholar 

  6. Kook S-Y, Snodgrass JM, Kirtikar A, Dauskardt RH (1998) Adhesion and reliability of polymer/inorganic interfaces. J Electron Packag 120:328

    Article  Google Scholar 

  7. Lane MW, Liu XH, Shaw TM (2004) Environmental effects on cracking and delamination of dielectric films. IEEE Trans Device Mater Reliab 4:142–147

    Article  Google Scholar 

  8. Dauskardt RH, Lane M, Ma Q, Krishna N (1998) Adhesion and debonding of multi-layer thin film structures. Eng Fract Mech 61:141–162

    Article  Google Scholar 

  9. Wiederhorn SM (1967) Influence of water vapor on crack propagation in soda-lime glass. J Am Ceram Soc 50:407–414

    Article  Google Scholar 

  10. Wiederhorn SM, Fuller ER, Thomson R (1980) Micromechanisms of crack growth in ceramics and glasses in corrosive environments. Metal Sci 14:450–458

    Article  Google Scholar 

  11. Chan MKV, Williams JG (1983) Slow stable crack growth in high density polyethylenes. Polymer (Guildf) 24:234–244

    Article  Google Scholar 

  12. Tonyali K, Brown HR (1986) On the applicability of linear elastic fracture mechanics to environmental stress cracking of low-density polyethylene. J Mater Sci 21:3116–3124

    Article  Google Scholar 

  13. Atanacio AJ, Latella BA, Barbé CJ, Swain MV (2005) Mechanical properties and adhesion characteristics of hybrid sol–gel thin films. Surf Coat Technol 192:354–364

    Article  Google Scholar 

  14. Dubois G, Volksen W, Magbitang T, Sherwood MH, Miller RD, Gage DM, Dauskardt RH (2008) Superior echanical properties of dense and porous organic/inorganic hybrid thin films. J Sol-Gel Sci Technol 48:187–193

    Article  Google Scholar 

  15. Julian B, Gervais C, Cordoncillo E, Escribano P, Babonneau F, Sanchez C (2003) Synthesis and characterization of transparent PDMS-metal-oxo based organic-inorganic nanocomposites. Chem Mater 15:3026–3034

    Article  Google Scholar 

  16. Tsai M-H, Ko C-J (2006) In situ formation, surface characteristics, and interfacial adhesion of poly(imide siloxane)/tantalum oxide hybrid films. Surf Coat Technol 201:4367–4371

    Article  Google Scholar 

  17. Giachino M, Dubois G, Dauskardt RH (2013) Heterogeneous solution deposition of high-performance adhesive hybrid films. ACS Appl Mater Interfaces 5:9891–9895

    Article  Google Scholar 

  18. Giachino M, Dubois G, Dauskardt RH (2015) Molecular design for moisture insensitivity of compositionally graded hybrid films. ACS Appl Mater Interfaces 7:6812–6818

    Article  Google Scholar 

  19. Oliver MS, Blohowiak KY, Dauskardt RH (2010) Molecular structure and fracture properties of ZrOX/Epoxysilane hybrid films. J Sol-Gel Sci Technol 55:360–368

    Article  Google Scholar 

  20. Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Infrared spectroscopy study of microstructures of poly (silsesquioxane) s. Chem Mater 20:1548–1554

    Article  Google Scholar 

  21. Iacopi F et al (2006) Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation. J Appl Phys 99:053511

    Article  Google Scholar 

  22. Mu J, Liu Y, Zheng S (2007) Inorganic–organic interpenetrating polymer networks involving polyhedral oligomeric silsesquioxane and poly(ethylene oxide). Polymer (Guildf) 48:1176–1184

    Article  Google Scholar 

  23. Liu W, Yang C, Chen W, Dai B-T, Tsai M-S (2002) The structural transformation and properties of spin-on poly (silsesquioxane) films by thermal curing. J Non Cryst Solids 311:233–240

    Article  Google Scholar 

  24. Xue G, Ishida H, Koenig JL (1986) Chemical reactions in the bulk of the epoxy-functional silane hydrolyzate. Die Angew Makromol Chem 140:127–134

    Article  Google Scholar 

  25. Armelao L et al (2006) Structural evolution upon thermal heating of nanostructured inorganic—organic hybrid materials to binary oxides MO2–SiO2 (M) Hf, Zr) as evaluated by solid-state NMR and FTIR spectroscopy. Chem Mater 18:6019–6030

    Article  Google Scholar 

  26. Wallace WE, Guttman CM, Antonucci JM (2000) Polymeric silsesquioxanes : degree-of-intramolecular-condensation measured by mass spectrometry. Polymer (Guildf) 41:2219–2226

    Article  Google Scholar 

  27. del Monte F, Larsen W, Mackenzie JD (2000) Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2–SiO2 binary oxides. J Am Ceram Soc 83:1506–1512

    Article  Google Scholar 

  28. Ma Y, Jia P, Li X, Liu N, Ma Y (2012) Synthesis of the ZrO2–SiO2 microspheres as a mesoporous candidate material. J Porous Mater 19:1047–1052

    Article  Google Scholar 

  29. Selvaraj M, Kim BH, Lee TG (2005) FTIR studies on selected mesoporous metallosilicate molecular sieves. Chem Lett 34:1290–1291

    Article  Google Scholar 

Download references

Acknowledgments

We thank Semiconductor Research Corporation (SRC) for their financial support under task ID: 2478.001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold H. Dauskardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Giachino, M. & Dauskardt, R.H. Controlling kinetics of heterogeneous sol–gel solution for high-performance adhesive hybrid films. J Sol-Gel Sci Technol 77, 620–626 (2016). https://doi.org/10.1007/s10971-015-3891-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3891-1

Keywords

Navigation