Skip to main content
Log in

Synchronous enhancements in dielectric performances and thermal conductivity of β-SiCw/PVDF nanocomposites through building crystalline SiO2 shell as an interlayer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer composites with high dielectric permittivity (ε′), low dissipation factor (tanδ) and excellent thermal conductivity (TC) are extremely desirable in microelectronics. In this study, a crystalline silicon dioxide (SiO2) shell was constructed on the surface of β-silicon carbide (β-SiCw) whisker via a facile thermal oxidation method, and the obtained core@shell structured β-SiCw@SiO2 were composited with poly(vinylidene fluoride) (PVDF) to expect high-ε' and TC, but low loss nanocomposites. The results show that the β-SiCw@SiO2/PVDF nanocomposites display extremely low conductivity and tanδ compared to the raw β-SiCw/PVDF because the insulating SiO2 interlayer stops immediate contact among β-SiCw and remarkably suppresses the long-range charge migration. Moreover, both the dielectric loss and conductivity are further reduced with increasing the SiO2 shell’ thickness while still holding a high-ε′. The constructed crystalline SiO2 interlayer not only improves the interfacial compatibility between the PVDF and β-SiCw via hydrogen bonding, thereby restraining the thermal interfacial resistance and facilitating phonon transport, but also enhances the TC of the nanocomposites thanks to its much higher TC compared with amorphous SiO2 encapsulated β-SiCw. The 40 wt% β-SiCw@SiO2/PVDF have good overall properties such as a high-ε′ of 38 but a low tanδ of 0.07 (100 Hz), and a TC of 1.72 W/(m·K). Therefore, the synchronous enhancements in dielectric properties and TC make the β-SiCw@SiO2/PVDF nanocomposites exhibit appealing potential application in electrical and microelectronic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu XJ, Zheng MS, Chen G, Dang ZM, Zha JW (2021) High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties. Energy Environ Sci 15(1):56–81

    Article  Google Scholar 

  2. Zhou WY, Chen QG, Sui XZ, Dong LN, Wang ZJ (2015) Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Compos A Appl Sci Manuf 71:184–191

    Article  CAS  Google Scholar 

  3. Li T, Zhou WY, Li Y, Cao D, Wang Y, Cao GZ, Liu XR, Cai HW, Dang ZM (2021) Synergy improvement of dielectric properties and thermal conductivity in PVDF composites with core-shell structured Ni@SiO2. J. Mater. Sci.: Mater. Electron 32:4076–4089

    CAS  Google Scholar 

  4. Lu TT, Liu Q, Xin SF, Peng DX (2020) Effect of frequency on dielectric properties of TiO2/PDMS dielectric elastomers. Chem Pap 74(9):2769–2773

    Article  CAS  Google Scholar 

  5. Fan BH, Liu Y, He DL, Bai JB (2016) Influences of graphene nanoplatelet aspect ratio and thermal treatment on dielectric performances of poly(methyl methacrylate) composites. High Voltage 1(4):146–150

    Article  Google Scholar 

  6. Omar H, Smales GJ, Henning S, Li Z, Wang DY, Schönhals A, Szymoniak P (2021) Calorimetric and dielectric investigations of epoxy-based nanocomposites with halloysite nanotubes as nanofillers. Polymers 13(10)

  7. Zhou WY, Li T, Yuan MX, Li B, Zhong SL, Li Z, Liu XR, Zhou JJ, Wang Y, Cai HW, Dang ZM (2021) Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater 42:1–11

    Article  Google Scholar 

  8. Zhou WY, Zhang Y, Wang JJ, Xu WH, Li B, Chen LQ, Wang Q (2020) Lightweight porous polystyrene with high thermal conductivity by constructing 3d interconnected network of boron nitride nanosheets. ACS Appl Mater Interfaces 12(41):46767–46778

    Article  CAS  PubMed  Google Scholar 

  9. Zhou WY, Kou YJ, Yuan MX, Li B, Cai HW, Li Z, Chen FX, Liu XR, Wang GH, Chen QG, Dang ZM (2019) Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos Sci Technol 181:107686

    Article  CAS  Google Scholar 

  10. Ren JH, Wang ZY, Xu P, Wang C, Gao F, Zhao DC, Liu SP, Yang H, Wang D, Niu CM, Zhu YS, Wu YT Liu X, Wang ZL, Zhang Y (2022) Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett 14(1)

  11. Zha JW, Zheng MS, Fan BH, Dang ZM (2021) Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy 89:1–20

    Article  Google Scholar 

  12. Jia LC, Jin YF, Ren JW, Zhao LH, Yan DX, Li ZM (2021) Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J Mater Chem C 9(8):2904–2911

    Article  CAS  Google Scholar 

  13. Zhong SL, Dang ZM, Zhou WY, Cai HW (2018) Past and future on nanodielectrics Nanodielectrics 1:41–47

    Google Scholar 

  14. Jiang YC, Zhang Z, Zhou Z, Yang H, Zhang QL (2019) Enhanced dielectric performance of P(VDF-HFP) composites with satellite-core-structured Fe2O3@BaTiO3 nanofillers. Polymers 10(11)

  15. Zha JW, Yao SC, Qiu Y, Zheng SM, Dang ZM (2019) Enhanced dielectric properties and energy storage of the sandwich-structured poly (vinylidene fluoride-co-hexafluoropropylene) composite films with functional BaTiO3@Al2O3 nanofibres. IET Nanodielectrics 2:103–108

    Article  Google Scholar 

  16. Wang P, Zhang XM, Duan W, Teng W, Liu YB, Xie Q (2021) Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin J Chem 39(5):1153–1158

    Article  CAS  Google Scholar 

  17. Wang P, Li ZQ, Xie Q, Duan W, Zhang XC, Han HL (2021) A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength. J Bionic Eng 18(1):55–64

    Article  Google Scholar 

  18. Yuan MX, Li B, Zhang SH, Rajagopalan R, Lanagan MT (2020) High-Field dielectric properties of oriented poly (vinylidene fluoride-co-hexafluoropropylene): structure–dielectric property relationship and implications for energy storage applications. ACS Appl Polym Mater 2(3):1356–1368

    Article  CAS  Google Scholar 

  19. Wang GY, Huang YH, Wang YX, Jiang PK, Huang XY (2017) Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness. Phys Chem Chem Phys 19:21058–21068

    Article  CAS  PubMed  Google Scholar 

  20. Pan ZB, Yao LM, Zhai JW, Liu SH, Yang K, Wang HT, Liu JH (2016) Fast discharge and high energy density of nanocomposite capacitors using Ba0.6 Sr0.4TiO3 nanofibers. Ceram Int 42(13):14667–14674

  21. Tang HX, Zhou Z, Sodano HA (2014) Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl Mater Interfaces 6(8):5450–5455

    Article  CAS  PubMed  Google Scholar 

  22. Tang HX, Lin YR, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22(1):015702

    Article  PubMed  Google Scholar 

  23. Bai P, Wang SJ, Jia JJ, Wang HX, Yang W (2021) Effect of BaTiO3 nanowire on effective permittivity of the PVDF composites. AIP Advances 11(4)

  24. Hou YP, Zhang ZC, Zhang JD, Liu ZF, Song ZY (2015) Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate. Rev Sci Instrum 86(5)

  25. Luo H, Ma C, Zhou XF, Chen S, Zhang D (2017) Interfacial design in dielectric nanocomposite using liquid-crystalline polymers. Macromolecules 50(13):5132–5137

    Article  CAS  Google Scholar 

  26. Zhao LH, Yan L, Wei CM, Li QH, Huang XL, Wang ZL, Fu ML, Ren JW (2020) Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres. J Phys Chem C 124(23):12723–12733

    Article  CAS  Google Scholar 

  27. Zheng MS, Zhang C, Yang Y, Xing ZL, Chen X, Zhong SL, Dang ZM (2020) Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3@polyurethane nanoparticles. IET Nanodielectrics 3(3):94–98

    Article  Google Scholar 

  28. Ren JW, Li QH, Yan L, Jia LC, Huang XL, Zhao LH, Ran QC, Fu ML (2020) Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater Des 191:108663

    Article  CAS  Google Scholar 

  29. AlTurki AM (2018) Low-temperature synthesis of core/shell of Co3O4@ZnO nanoparticle characterization and dielectric properties. J Nanostruct Chem 8(2):153–158

    Article  CAS  Google Scholar 

  30. Wang Y, Zhu LJ, Zhou J, Jia BB, Jiang YY, Wang JK, Wang ML, Cheng YH, Wu K (2019) Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al2O3 core-shell particles. Polym Bull 76(8):3957–3970

    Article  CAS  Google Scholar 

  31. Zhou JJ, Zhou WY, Cao D, Zhang CH, Peng WW, Yao T, Zuo J, Cai JT, Li Y (2022) PVDF reinforced with core-shell structured Mo@MoO3 fillers: effects of semi-conductor MoO3 interlayer on dielectric properties of composites. J Polym Res 29(3)

  32. Gong Y, Zhou WY, Wang ZJ, Xu L, Kou YJ, Cai HW, Liu XR, Chen QG, Dang ZM (2018) Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer. J Mater Sci Technol 34(12):2415–2423

    Article  CAS  Google Scholar 

  33. Cao D, Zhou WY, Yuan MX, Li B, Li T, Li J, Liu DF, Wang GH, Zhou JJ, Zhang HF (2022) Polymer composites filled with core-shell structured nanofillers: effects of shell thickness on dielectric and thermal properties of composites. J Mater Sci Mater Electron 33(8):5174–5189

    Article  CAS  Google Scholar 

  34. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    Article  CAS  PubMed  Google Scholar 

  35. Zhou WY, Gong Y, Tu LT, Li X, Zhao W, Cai JT, Zhang YT, Zhou AN (2017) Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly (vinylidene fluoride) composites. Alloy Compd 693:1–8

    Article  CAS  Google Scholar 

  36. Wang ZD, Wang XZ, Wang SL, He JY, Zhang T, Wang J, Wu GL (2021) Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomaterials 11(8)

  37. Li B, Xidas PI, Manias E (2018) High breakdown strength polymer nanocomposites based on the synergy of nanofiller orientation and crystal orientation for insulation and dielectric applications. ACS Appl Nano Mater 1(7):3520–3530

    Article  CAS  Google Scholar 

  38. Li T, Zhou WY, Li Y, Cao D, Wu HJ, Liu DF, Wang Y, Cao GZ, Dang ZM (2021) Concurrently improving dielectric properties and thermal conductivity of Ni/PVDF composites by constructing NiO shell as an interlayer. J Mater Sci Mater Electron 32(11):14764–14779

  39. Li B, Xidas PI, Triantafyllidis KS, Manias E (2017) Effect of crystal orientation and nanofiller alignment on dielectric breakdown of polyethylene/montmorillonite nanocomposites. Appl Phys Lett 111(8)

  40. Hou X, Chen YP, Lv L, Dai W, Zhao S, Wang ZW, Fu L, Lin CT, Jiang N, Yu JH (2019) High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets. ACS Appl Nano Mater 2(1):360–368

    Article  CAS  Google Scholar 

  41. Wang ZD, Meng GD, Wang LL, Tian LL, Chen SY, Wu GL, Kong B, Cheng YH (2021) Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci Rep 11(1)

  42. Zhou WY, Zhang F, Yuan, MX, Li B, Peng JD, Lv YQ, Cai HW, Liu XR, Chen QG, Dang ZM (2019) Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles. J Mater Sci Mater Electron 30(20):18350–18361

  43. Lu X, Deng W, Wei JD, Wan YH, Zhang JJ, Zhang L, Jin L, Cheng ZY (2021) Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Compos Part B 224

  44. Lu X, Deng W, Wei JD, Zhu YS, Ren PR, Wan YH, Yan FX, Jin L, Zhang L, Cheng ZY (2021) Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J Mater Sci 56(36):19983–19995

    Article  CAS  Google Scholar 

  45. Zhao LH, Liao CJ, Liu Y, Huang XL, Ning WJ, Wang Z, Jia LCA, Ren JW (2018) A combination of aramid nanofiber and silver nanoparticle decorated boron nitride for the preparation of a composite film with superior thermally conductive performance. Compos Interfaces. https://doi.org/10.1016/j.compositesa.2018.12.022

  46. Wang ZD, Yang MM, Cheng YH, Liu JY, Xiao B, Chen SY, Huang JL, Xie Q, Wu GL, Wu HJ (2019) Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos A 118:302–311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 51937007), Shaanxi Provincial Natural Science Foundation of China (No.2022JM-186), and acknowledge the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenying Zhou or Bo Li.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhou, W., Li, B. et al. Synchronous enhancements in dielectric performances and thermal conductivity of β-SiCw/PVDF nanocomposites through building crystalline SiO2 shell as an interlayer. J Polym Res 29, 234 (2022). https://doi.org/10.1007/s10965-022-03091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03091-6

Keywords

Navigation