Skip to main content
Log in

Ni(OH)2/RGO nanosheets constituted 3D structure for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ni(OH)2/reduced graphene oxide (RGO) nanosheets constituted 3D structure have been successfully prepared via a facile two-step method. Through this method, Ni(OH)2 can uniformly grow on both side of RGO nanosheets and the RGO nanosheets are partially overlapped, thereby forming a 3D structure. The Ni(OH)2/RGO composite delivers much higher specific capacitance and improved rate capability than the pure Ni(OH)2 sample and the Ni(OH)2–RGO mixture. A specific capacitance up to 1143 F g−1 at 1 A g−1 is attained, 64 % of which can still be retained after 20 times increase in current density. In addition, excellent cycling stability can also be obtained, and 97 % of the capacitance can still be retained after 1500 charge and discharge cycles.

Graphical Abstract

Ni(OH)2/RGO nanosheets constituted 3D structure have been successfully prepared, which show superior specific capacitance with improved rate capability and long cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  Google Scholar 

  3. Chen HC, Jiang JJ, Zhang L, Wan HZ, Qi T, Xia DD (2013) Nanoscale 5:8879

    Article  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  Google Scholar 

  5. Ellis BL, Knauth P, Djenizian T (2014) Adv Mater 26:3368–3397

    Article  Google Scholar 

  6. Yan J, Wang Q, Wei T, Fan Z (2014) Adv Energy Mater 4:1300816

    Google Scholar 

  7. Liu S, Sun S, You XZ (2014) Nanoscale 6:2037–2045

    Article  Google Scholar 

  8. Chen LY, Hou Y, Kang JL, Hirata A, Fujita T, Chen MW (2013) Adv Energy Mater 3:851–856

    Article  Google Scholar 

  9. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695

    Article  Google Scholar 

  10. Wang B, Chen JS, Wang Z, Madhavi S, Lou XW (2012) Adv Energy Mater 2:1188–1192

    Article  Google Scholar 

  11. Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH (2013) ACS Appl Mater Interfaces 5:1596–1603

    Article  Google Scholar 

  12. Wang HL, Casalongue HS, Liang YY, Dai HJ (2010) J Am Chem Soc 132:7472–7477

    Article  Google Scholar 

  13. Yang S, Wu X, Chen C, Dong H, Hu W, Wang X (2012) Chem Commun 48:2773

    Article  Google Scholar 

  14. Lee JW, Ahn T, Soundararajan D, Ko JM, Kim JD (2011) Chem Commun 47:6305–6307

    Article  Google Scholar 

  15. Chen X, Chen X, Zhang F, Yang Z, Huang S (2013) J Power Sources 243:555–561

    Article  Google Scholar 

  16. Xiao Y, Liu S, Li F, Zhang A, Zhao J, Fang S, Jia D (2012) Adv Funct Mater 22:4052–4059

    Article  Google Scholar 

  17. Yu Z, Duong B, Abbitt D, Thomas J (2013) Adv Mater 25:3302–3306

    Article  Google Scholar 

  18. Benhaddad L, Makhloufi L, Messaoudi B, Rahmouni K, Takenouti H (2009) ACS Appl Mater Interfaces 1:424–432

    Article  Google Scholar 

  19. Xiao J, Yang S (2012) ChemPlusChem 77:807–816

    Article  Google Scholar 

  20. Wang H, Robinson JT, Diankov G, Dai H (2010) J Am Chem Soc 132:3270–3271

    Article  Google Scholar 

  21. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  Google Scholar 

  22. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771

    Article  Google Scholar 

  23. Xu Y, Huang X, Lin Z, Zhong X, Huang Y, Duan X (2013) Nano Res 6:65–76

    Article  Google Scholar 

  24. Xu YX, Wu Q, Sun YQ, Bai H, Shi GQ (2010) ACS Nano 4:7358–7362

    Article  Google Scholar 

  25. Li C, Shi GQ (2012) Nanoscale 4:5549–5563

    Article  Google Scholar 

  26. Li J, Yang M, Wei J, Zhou Z (2012) Nanoscale 4:4498–4503

    Article  Google Scholar 

  27. Sun Z, Lu X (2012) Ind Eng Chem Res 51:9973–9979

    Article  Google Scholar 

  28. Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y (2011) J Mater Chem 21:18792

    Article  Google Scholar 

  29. Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Nano Res 5:605–617

    Article  Google Scholar 

  30. Wang HW, Hu ZA, Chang YQ, Chen YL, Wu HY, Zhang ZY, Yang YY (2011) J Mater Chem 21:10504

    Article  Google Scholar 

  31. Zhou W, Liu J, Chen T, Tan KS, Jia X, Luo Z, Cong C, Yang H, Li CM, Yu T (2011) Phys Chem Chem Phys 13:14462–14465

    Article  Google Scholar 

  32. Xiang C, Li M, Zhi M, Manivannan A, Wu N (2013) J Power Sources 226:65–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Chen, H. & Shu, K. Ni(OH)2/RGO nanosheets constituted 3D structure for high-performance supercapacitors. J Sol-Gel Sci Technol 77, 463–469 (2016). https://doi.org/10.1007/s10971-015-3876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3876-0

Keywords

Navigation