Skip to main content
Log in

A simple hydrothermal route for the low-temperature processing of nanocrystalline TiO2

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Well-shaped pure anatase TiO2 nanocrystals were successfully synthesized using an indirect approach by hydrolysis of titanium n-butoxide in 2-propanol, 2-butanol, and 2-pentanol. TiO2 nanocrystals formed without any auxiliary reactants or surfactants at a temperature as low as 200 °C using a simple hydrothermal-assisted sol–gel processing method. The effect of the chain length of alcohol on the degree of crystallinity, particle size, porosity, and pore size was investigated by low-angle and wide-angle X-ray diffraction (XRD), scanning electron microscope, energy-dispersive X-ray, transmission electron microscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), and N2 adsorption–desorption analyses. XRD techniques confirmed the crystalline nature and mesostructure of the as-prepared samples. HR-TEM images for the prepared sample in 2-propanol (Ti-1) which is obtained without any calcination show the well-crystallized structure having equilateral hexagonal shape and uniform size. In accordance with XRD data, SAED image shows distinct electron diffraction rings of the set of interplanar distances which could be indexed to the tetragonal phase of TiO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang F, Deng D, Pan X, Fu Q, Bao X (2015) Understanding nano effects in catalysis. Natl Sci Rev 2:183–201

    Article  Google Scholar 

  2. Sanlés-Sobrido M, Pérez-Lorenzo M, Rodríguez-González B, Salgueiriño V, Correa-Duarte MA (2012) highly active nanoreactors: nanomaterial encapsulation based on confined catalysis. Angew Chem Int Ed Engl 51:3877–3882

    Article  Google Scholar 

  3. Mohammadnezhad G, Amini MM, Khavasi HR (2010) A single source precursor for low temperature processing of nanocrystalline MgAl2O4 spinel: synthesis and characterization of [MgAl23-O)(μ2-OiPr)4(OiPr)2]4. Dalton Trans 39:10830–10832

    Article  Google Scholar 

  4. Mohammadnezhad G, Dinari M, Soltani R, Bozorgmehr Z (2015) Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate). Appl Surf Sci 346:182–188

    Article  Google Scholar 

  5. Mohammadnezhad G, Akintola O, Plass W, Schacher FH, Steiniger F, Westermann M (2015) Facile synthesis of highly thermally stable nanoporous γ-aluminas from aluminum alkoxide precursors. RSC Adv 5:49493–49499

    Article  Google Scholar 

  6. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  7. Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloy Compd 637:393–400

    Article  Google Scholar 

  8. Vasantharaja D, Ramalingam V, Aadinaath Reddy G (2015) Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male Wistar rats. Nanomed J 2:46–53

    Google Scholar 

  9. Mohammadpour F, Moradi M (2015) High efficient transparent TiO2 nanotube dye-sensitized solar cells: adhesion of TiO2 nanotube membrane to FTO by two different methods. JNS 5:55–60

    Google Scholar 

  10. Mehrizad A, Gharbani P (2011) Study on catalytic and photocatalytic decontamination of (2-Chloroethyl) phenyl sulfide with nano-TiO2. Int J Nanosci Nanotechnol 7:48–53

    Google Scholar 

  11. Momeni MM (2015) Study of synergistic effect among photo-, electro-, and sonoprocesses in photocatalyst degradation of phenol on tungsten-loaded titania nanotubes composite electrode. Appl Phys A Mater Sci Process 119:1413–1422

    Article  Google Scholar 

  12. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503

    Article  Google Scholar 

  13. Sakthivel S, Kisch H (2003) Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. Chem Phys Chem 4:487

    Google Scholar 

  14. Motonari A, Yusuke M, Jun T, Jinting J, Masaru S, Fumin W (2004) Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J Am Chem Soc 126:14943–14949

    Article  Google Scholar 

  15. Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548

    Article  Google Scholar 

  16. Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114:9319–9345

    Article  Google Scholar 

  17. Ding Z, Lu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104:4815–4820

    Article  Google Scholar 

  18. Seo JW, Chung H, Kim MY, Lee J, Choi IH, Cheon J (2007) Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small 3:850–853

    Article  Google Scholar 

  19. Li W, Bai Y, Liu C, Yang Z, Feng X, Lu X, van der Laak NK, Chan KY (2009) Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis. Environ Sci Technol 43:5423–5428

    Article  Google Scholar 

  20. Ohno T, Sarukawa K, Matsumura M (2001) Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J Phys Chem B 105:2417–2420

    Article  Google Scholar 

  21. Ding K, Miao Z, Liu Z, Zhang Z, Han B, An G, Miao S, Xie Y (2007) Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J Am Chem Soc 129:6362–6363

    Article  Google Scholar 

  22. Jiang D, Xu Y, Hou B, Wu D, Sun Y (2008) A simple non-aqueous route to anatase TiO2. Eur J Inorg Chem 8:1236–1240

    Article  Google Scholar 

  23. Xu J, Ao Y, Fu D, Yuan C (2008) A simple route to synthesize highly crystalline N-doped TiO2 particles under low temperature. J Cryst Growth 310:4319–4324

    Article  Google Scholar 

  24. Šícha J, Musil J, Meissner M, Čerstvý R (2008) Nanostructure of photocatalytic TiO2 films sputtered at temperatures below 200 °C. Appl Surf Sci 254:3793–3800

    Article  Google Scholar 

  25. Han S, HChoi S, HChoi S, HChoi SS, HChoi S, HChoi S, HChoi S, HChoi S (2005) Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1:812–816

    Article  Google Scholar 

  26. Kaper H, Endres F, Djerdj I, Antonietti M, Smarsly BM, Maier J, Hu YS (2007) Direct low-temperature synthesis of rutile nanostructures in ionic liquids. Small 3:1753–1763

    Article  Google Scholar 

  27. Hart JN, Cervini R, Cheng YB, Spiccia Simon GP (2004) Low temperature formation of anatase titanium dioxide. Key Eng Mater 264:1221–1224

    Article  Google Scholar 

  28. Liu AR, Wang SM, Zhao YR, Zheng Z (2006) Low-temperature preparation of nanocrystalline TiO2 photocatalyst with a very large specific surface area. Mater Chem Phys 99:131–134

    Article  Google Scholar 

  29. Yang J, Mei S, Ferreira JM (2000) Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions. J Am Ceram Soc 83:1361–1368

    Article  Google Scholar 

  30. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686

    Article  Google Scholar 

  31. Katoch A, Kim H, Hwang T, Kim SS (2012) Preparation of highly stable TiO2 sols and nanocrystalline TiO2 films via a low temperature sol–gel route. J Sol Gel Sci Technol 61:77–82

    Article  Google Scholar 

  32. Mahata S, Mondal B, Mahata SS, Usha K, Mandal N, Mukherjee K (2015) Chemical modification of titanium isopropoxide for producing stable dispersion of titania nano-particles. Mater Chem Phys 151:267–274

    Article  Google Scholar 

  33. Mirzaee M, Amini MM, Sadeghi M, Mousavi FY, Sharbatdaran M (2005) Preparation and characterization of boehmite, CuO, TiO2 and Nb2O5 by hydrothermal assisted sol–gel processing of metal alkoxide. Ceram Silik 49:40–47

    Google Scholar 

  34. Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL (1999) Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc 121:1613–1614

    Article  Google Scholar 

  35. Jun YW, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP (2003) Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J Am Chem Soc 125:15981–15985

    Article  Google Scholar 

  36. Liu C, Fu L, Economy J (2004) A simple, template-free route for the synthesis of mesoporous titanium dioxide materials. J Mater Chem 14:1187–1189

    Article  Google Scholar 

  37. Kawasaki S, Xiuyi Y, Sue K, Hakuta Y, Suzuki A, Arai K (2009) Continuous supercritical hydrothermal synthesis of controlled size and highly crystalline anatase TiO2 nanoparticles. J Supercrit Fluids 50:276–282

    Article  Google Scholar 

  38. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Roquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  Google Scholar 

  39. de Boer JH (1958) The structure and properties of porous materials. Butterworths, London, p 68

    Google Scholar 

Download references

Acknowledgments

The authors thank Isfahan University of Technology and the Vice-Presidents of Office for Research Affairs, Shahid Beheshti University, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossein Mohammadnezhad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadnezhad, G., Amini, M.M. A simple hydrothermal route for the low-temperature processing of nanocrystalline TiO2 . J Sol-Gel Sci Technol 77, 378–385 (2016). https://doi.org/10.1007/s10971-015-3864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3864-4

Keywords

Navigation