Skip to main content
Log in

Direct formation and phase stability of luminescent γ-Ga2O3 spinel nanocrystals via hydrothermal method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystals of γ-gallium oxide (γ-Ga2O3) were directly synthesized as a single phase of spinel-type structure from the aqueous precursor solution of Ga(NO3)3 or Ga2(SO4)3 under weakly basic conditions in the presence of citric acid by mild hydrothermal method. The crystallite size of γ-Ga2O3 spinel that was hydrothermally formed at 180–240 °C for 5 h was in the dimension range from 5 to 9 nm. The optical band gap of the as-prepared γ-Ga2O3 was 4.88 eV. The γ-Ga2O3 nanocrystals synthesized at 180 °C showed a broad-band visible violet–blue light emission with a peak wavelength at 410 nm, centered at around 425 nm under excitation at 325 nm. The emission intensity of γ-Ga2O3 synthesized at 210 and 240 °C was lower than that of 180 °C. The spinel-type structure of γ-Ga2O3 was maintained up to 600 °C. The γ-Ga2O3 phase fully transformed into β-Ga2O3 after heating at 800 °C. The luminescence intensity of gallium oxide decreased, and the peak wavelength of emission spectrum shifted into lower wavelengths via heat treatment at 600 and 800 °C for 1 h in air.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64:297–381

    Article  Google Scholar 

  2. Gudiksen Mark S, Lauhon Lincoln J, Jlanfang Wang, Smith David C, Lieber Charles M (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620

    Article  Google Scholar 

  3. Lu A-H, Salabas EL, Schueth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  4. Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2:944–961

    Article  Google Scholar 

  5. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  Google Scholar 

  6. Dawson WJ (1988) Hydrothermal synthesis of advanced ceramic powders. Am Ceram Soc Bull 67:1673–1678

    Google Scholar 

  7. Hirano M, Kato E (1996) Hydrothermal synthesis and sintering of fine powders in CeO2-ZrO2 system. J Ceram Soc Jpn 104:958–962

    Article  Google Scholar 

  8. Hirano M, Morikawa H, Inagaki M, Toyoda M (2002) Direct synthesis of new zircon-type ZrGeO4 and Zr(Ge, Si)O4 solid solutions. J Am Ceram Soc 85:1915–1920

    Article  Google Scholar 

  9. Binet L, Gourier D, Minot C (1994) Relation between electron band structure and magnetic bistability of conduction electrons in β-Ga2O3. J Solid State Chem 113:420–433

    Article  Google Scholar 

  10. Sharma S, Sunkara MK (2002) Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes. J Am Chem Soc 124:12288–12293

    Article  Google Scholar 

  11. Roy R, Hill VG, Osborn EF (1952) Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc 74:719–722

    Article  Google Scholar 

  12. Tas AC, Majewski PJ, Aldinger F (2002) Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior. J Am Ceram Soc 85:1421–1429

    Article  Google Scholar 

  13. Nakagawa K, Kajita C, Okumura K, Ikenaga NO, NishitaniGamo M, Ando T, Kobayashi T, Suzuki T (2001) Role of carbon dioxide in the dehydrogenation of ethane over gallium-loaded catalysts. J Catal 203:87–93

    Article  Google Scholar 

  14. Peter AL, Auroux A, Gelin P, Caldarau M, Ionescu NI (2001) Acid–base properties of supported gallium oxide catalysts. Thermochim Acta 379:177–185

    Article  Google Scholar 

  15. Miyata T, Nakatani T, Minami T (2000) Manganese-activated gallium oxide electroluminescent phosphor thin films prepared using various deposition methods. Thin Solid Films 373:145–149

    Article  Google Scholar 

  16. Weh T, Frank J, Fleischer M, Meixner H (2001) On the mechanism of hydrogen sensing with SiO2 modificated high temperature Ga2O3 sensors. Sens Actuators B 78:202–207

    Article  Google Scholar 

  17. Ueda N, Hosono H, Waseda R, Kawazoe H (1997) Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett 70:3561–3563

    Article  Google Scholar 

  18. Binet L, Gourier D (1998) Origin of the blue luminescence of β-Ga2O3. J Phys Chem Solids 59:1241–1249

    Article  Google Scholar 

  19. Edwards DD, Mason TO, Goutenoir F, Poeppelmeier KR (1997) A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system. Appl Phys Lett 70:1706–1708

    Article  Google Scholar 

  20. Ogita M, Higo K, Nakanishi Y, Hatanaka Y (2001) Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci 175–176:721–725

    Article  Google Scholar 

  21. Hayashi H, Huang R, Ikeno H, Oba F, Yoshioka S, Tanaka I, Sonoda S (2006) Room temperature ferromagnetism in Mn-doped γ-Ga2O3 with spinel structure. Appl Phys Lett 89:181903/1–181903/3

    Article  Google Scholar 

  22. Arean CO, Delgado MR, Montouillout V, Massiot D (2005) Synthesis and characterization of spinel-type gallia–alumina solid solutions. Z Anorg Allg Chem 631:2121–2126

    Article  Google Scholar 

  23. Chen T, Tang K (2007) γ-Ga2O3 quantum dots with visible blue–green light emission property. Appl Phys Lett 90:053104-1–053104-3

    Google Scholar 

  24. Takahashi M, Nakatani T, Iwamoto S, Watanabe T, Inoue M (2006) Effect of modification by alkali on the γ-Ga2O3–Al2O3 mixed oxides prepared by the solvothermal method. J Phys Condens Matter 18:5745–5757

    Article  Google Scholar 

  25. Pohl K (1968) Hydrothermale bildung von γ-Ga2O3. Naturwissenschaften 55:82–82

    Article  Google Scholar 

  26. Chen M, Xu J, Su FZ, Liu YM, Cao Y, He HY, Fan KN (2008) Dehydrogenation of propane over spinel-type gallia–alumina solid solution catalysts. J Catal 256:293–300

    Article  Google Scholar 

  27. Oshima T, Nakazono T, Mukai A, Ohtomo A (2012) Epitaxial growth of γ-Ga2O3 films by mist chemical vapor decomposition. J Cryst Growth 359:60–63

    Article  Google Scholar 

  28. Srihari V, Sridharan V, Sahu HK, Raghavan G, Sastry VS, Sundar CS (2009) Combustion synthesis of Ga2O3 nanoparticle. J Mater Sci 44:671–675

    Article  Google Scholar 

  29. Wang T, Farvid SS, Mutalifu A, Radovanovic PV (2010) Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals. J Am Chem Soc 132:9250–9250

    Article  Google Scholar 

  30. Wang T, Radovanovic PV (2011) In situ enhancement of the blue photoluminescence of colloidal Ga2O3 nanocrystals by promotion of defect formation in reducing conditions. Chem Commun 47:7161–7163

    Article  Google Scholar 

  31. Sakoda K, Hirano M (2014) Formation of complete solid solutions, Zn(AlxGa1−x)2O4 spinel nanocrystals via hydrothermal route. Ceram Int 40:15841–15848

    Article  Google Scholar 

  32. Sakoda K, Hirano M (2015) Effect of heat-treatment and composition on structure and luminescence properties of spinel-type solid solution nanocrystals. J Nanosci Nanotechnol 15:6069–6077

    Article  Google Scholar 

  33. Hirano M, Okumura S, Hasegawa Y, Inagaki M (2001) Direct precipitation of spinel type oxides ZnGa2O4 from aqueous solutions at low temperature below 90 °C. Int J Inorg Mater 3:797–801

    Article  Google Scholar 

  34. Hirano M, Okumura S, Hasegawa Y, Inagaki M (2002) Precipitation of spinel-type Zn(Fe, Ga)2O4 solid solutions from aqueous solutions below 90°°C: influence of iron valence of staring salt on their crystallite growth. J Solid State Chem 168:5–10

    Article  Google Scholar 

  35. Hirano M, Imai M, Inagaki M (2000) Preparation of ZnGa2O4 spinel fine particles by hydrothermal method. J Am Ceram Soc 83:977–979

    Article  Google Scholar 

  36. Hirano M, Sakaida N (2002) Hydrothermal synthesis and low temperature sintering of zinc gallate spinel fine particles. J Am Ceram Soc 85:1145–1150

    Article  Google Scholar 

  37. Jeong IK, Park HL, Mho SI (1998) Two self-activated optical centers of blue emission in zinc gallate. Solid State Commun 105:179–183

    Article  Google Scholar 

  38. Cao M, Djerdj I, Antonietti M, Niederberger M (2007) Nonaqueous synthesis of colloidal ZnGa2O4 nanocrystals and their photoluminescence properties. Chem Mater 19:5830–5832

    Article  Google Scholar 

  39. Silva AAD, Goçalves AS, Davolos MR (2009) Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method. J Sol–Gel Sci Technol 49:101–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hirano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, M., Sakoda, K. & Hirose, Y. Direct formation and phase stability of luminescent γ-Ga2O3 spinel nanocrystals via hydrothermal method. J Sol-Gel Sci Technol 77, 348–354 (2016). https://doi.org/10.1007/s10971-015-3860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3860-8

Keywords

Navigation