Skip to main content
Log in

One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet–visible absorption spectroscopy (UV–Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300–700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5–7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.H. Liang, G.W. Meng, G.Z. Wang, Y.W. Wang, L.D. Zhang, S.Y. Zhang, Appl. Phys. Lett. 78, 21 (2001)

    Article  ADS  Google Scholar 

  2. B.K. Kang, S.R. Mang, D.H. Go, D.H. Yoon, Mater. Lett. 111, 67 (2013)

    Article  Google Scholar 

  3. J.F. Zheng, W. Tsai, T.D. Lin, Y.J. Lee, C.P. Chen, M. Hong, J. Kwo, S. Cui, T.P. Ma, Appl. Phys. Lett. 91, 223502 (2007)

    Article  ADS  Google Scholar 

  4. K. Girija, S. Thirumalairajan, V.R. Mastelaro, D. Mangalaraj, Anal. Methods 8, 3224 (2016)

    Article  Google Scholar 

  5. J.L. Wu, M. Chen, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Catal. Commun. 30, 61 (2013)

    Article  Google Scholar 

  6. Y.D. Hou, L. Wu, X.C. Wang, Z.X. Ding, Z.H. Li, X.Z. Fu, J. Catal. 250, 12 (2007)

    Article  Google Scholar 

  7. L.C. Tien, W.T. Chen, C.H. Ho, J. Am. Ceram. Soc. 94, 3117 (2011)

    Article  Google Scholar 

  8. H.Y. Playford, A.C. Hannon, E.R. Barney, R.I. Walton, Chem. Eur. J. 19, 2803 (2013)

    Article  Google Scholar 

  9. L.C. Tien, C.H. Ho, X.T. Yao, J.R. Cai, Appl. Phys. A 102, 105 (2011)

    Article  ADS  Google Scholar 

  10. S.Q. Jin, X. Wang, X.L. Wang, M.G. Ju, S. Shen, W.Z. Liang, Y. Zhao, Z.C. Feng, H.Y. Playford, R.I. Walton, C. Li, J. Phys. Chem. C 119, 18221 (2015)

    Article  Google Scholar 

  11. M. Bartic, Phys. Stat. Solidi A 213, 457 (2016)

    Article  ADS  Google Scholar 

  12. Y.Y. Lv, L.S. Yu, G.J. Zha, D.G. Zheng, C.M. Jiang, Appl. Phys. A 114, 351 (2014)

    Article  ADS  Google Scholar 

  13. M. Hegde, I.D. Hosein, P.V. Radovanovic, J. Phys. Chem. C 119, 17450 (2015)

    Article  Google Scholar 

  14. M.A. Caro, S. Schulz, E.P. O’Reilly, Phys. Rev. B 91, 075203 (2015)

    Article  ADS  Google Scholar 

  15. T. Wang, S.S. Farvid, M. Abulikemu, P.V. Radovanovic, J. Am. Chem. Soc. 132, 9250 (2010)

    Article  Google Scholar 

  16. C.C. Huang, C.S. Yeh, New J. Chem. 34, 103 (2010)

    Article  Google Scholar 

  17. H.Y. Playford, A.C. Hannon, M.G. Tucker, D.M. Dawson, S.E. Ashbrook, R.J. Kastiban, J. Sloan, R.I. Walton, J. Phys. Chem. C 118, 16188 (2014)

    Article  Google Scholar 

  18. R. Lorenzi, A. Paleari, N.V. Golubev, E.S. Ignat’eva, V.N. Sigaev, M. Niederberger, A. Lauria, J. Mater. Chem. C 3, 41 (2015)

    Article  Google Scholar 

  19. J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.A. Varela, P.S. Pizani, E. Longo, Chem. Eng. J. 140, 632 (2008)

    Article  Google Scholar 

  20. K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Chem. Mater. 11, 882 (1999)

    Article  Google Scholar 

  21. L.S. Reddy, Y.H. Ko, J.S. Yu, Nanoscale Res. Lett. 10, 364 (2015)

    Article  ADS  Google Scholar 

  22. K. Girija, S. Thirumalairajan, G.S. Avadhani, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Mater. Res. Bull. 48, 2296 (2013)

    Article  Google Scholar 

  23. S. Maddila, E.O. Oseghe, S.B. Jonnalagadda, J. Chem. Technol. Biotechnol. 91, 385 (2016)

    Article  Google Scholar 

  24. K. Girija, S. Thirumalairajan, D. Mangalaraj, Chem. Eng. J. 236, 181 (2014)

    Article  Google Scholar 

  25. V. Ghodsi, S. Jin, J.C. Byers, Y. Pan, P.V. Radovanovic, J. Phys. Chem. C 121, 9433 (2017)

    Article  Google Scholar 

  26. C.C. Tang, Y. Bando, Y. Huang, C.Y. Zhi, D. Golberg, X.W. Xu, J.L. Zhao, Y.X. Li, Nanotechnology. 21, 115705 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Projects were supported by the Science and Technology Project of the Education Department of Heilongjiang Province (No. 12531526) for which the authors are very grateful.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Wang or Baifu Xin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Wang, H., Xin, B. et al. One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium. Appl. Phys. A 123, 634 (2017). https://doi.org/10.1007/s00339-017-1250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1250-5

Navigation