Skip to main content

Advertisement

Log in

Synthesis, dielectric properties, and influences oxygen vacancies have on electrical properties of Na1/2Bi1/2Cu3Ti4O12 ceramics prepared by a urea combustion method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The influences of oxygen vacancies on the dielectric and electrical properties of Na1/2Bi1/2Cu3Ti4O12 ceramics prepared using a urea combustion method were investigated via an annealing treatment in an O2 atmosphere. Interestingly, a single Na1/2Bi1/2Cu3Ti4O12 phase was successfully prepared using a low calcination temperature of 800 °C. High dielectric permittivity (ε′) and dense ceramic microstructure were achieved by sintering compacted powders at a low temperature of 980 °C. ε′ and the loss tangent (tanδ) were decreased by annealing in an O2 atmosphere. This was associated with the oxygen vacancy concentration at grain boundaries (GBs). A decrease in low-frequency tanδ was caused by enhancement of GB resistance, which was due to filling oxygen vacancies at GBs. A slight decrease in ε′ was attributed to the reduction in GB capacitance. Through use of an annealing process, the conduction activation energy at GBs was increased, whereas the conduction activation energy inside the grains remained unchanged. These results clearly indicated the effect of oxygen vacancy concentration at the GBs on the giant dielectric response and correlated GB response.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Subramanian MA, Li D, Duan N, Reisner BA, Sleight AW (2000) J Solid State Chem 151:323

    Article  Google Scholar 

  2. Krohns S, Lunkenheimer P, Meissner S, Reller A, Gleich B, Rathgeber A, Gaugler T, Buhl HU, Sinclair DC, Loidl A (2011) Nat Mater 10:899

    Article  Google Scholar 

  3. Liu L, Fan H, Fang P, Chen X (2008) Mater Res Bull 43:1800

    Article  Google Scholar 

  4. Liu L, Fan H, Fang P, Jin L (2007) Solid State Commun 142:573

    Article  Google Scholar 

  5. Zhang JL, Zheng P, Wang CL, Zhao ML, Li JC, Wang JF (2005) Appl Phys Lett 87:142901

    Article  Google Scholar 

  6. Shao SF, Zhang JL, Zheng P, Zhong WL, Wang CL (2006) J Appl Phys 99:084106

    Article  Google Scholar 

  7. Krohns S, Lunkenheimer P, Ebbinghaus SG, Loidl A (2008) J Appl Phys 103:084107

    Article  Google Scholar 

  8. Yang J, Shen M, Fang L (2005) Mater Lett 59:3990

    Article  Google Scholar 

  9. Adams TB, Sinclair DC, West AR (2006) J Am Ceram Soc 89:3129

    Article  Google Scholar 

  10. Marques VPB, Ries A, Simões AZ, Ramírez MA, Varela JA, Longo E (2007) Ceram Int 33:1187

    Article  Google Scholar 

  11. Shao SF, Zhang JL, Zheng P, Wang CL (2007) Solid State Commun 142:281

    Article  Google Scholar 

  12. Thomas P, Dwarakanath K, Varma KBR (2012) J Eur Ceram Soc 32:1681

    Article  Google Scholar 

  13. Sun D-L, Wu A-Y, Yin S-T (2008) J Am Ceram Soc 91:169

    Article  Google Scholar 

  14. Jha P, Arora P, Ganguli AK (2003) Mater Lett 57:2443

    Article  Google Scholar 

  15. Hao W, Zhang J, Tan Y, Su W (2009) J Am Ceram Soc 92:2937

    Article  Google Scholar 

  16. Shri Prakash B, Varma KBR (2006) J Mater Sci Mater Electron 17:899

    Article  Google Scholar 

  17. Subramanian MA, Sleight AW (2002) Solid State Sci 4:347

    Article  Google Scholar 

  18. Liang P, Yang Z, Chao X, Liu Z (2012) J Am Ceram Soc 95:2218

    Article  Google Scholar 

  19. Qiu Y, Yuan S, Tian Z, Chen L, Wang C, Duan H, Guo K (2012) Appl Phys A 107:379

    Article  Google Scholar 

  20. Liu Z, Chao X, Yang Z (2014) J Mater Sci Mater Electron 25:2096

    Article  Google Scholar 

  21. Somphan W, Sangwong N, Yamwong T, Thongbai P (2012) J Mater Sci Mater Electron 23:1229

    Article  Google Scholar 

  22. Tuichai W, Thongbai P, Amornkitbamrung V, Yamwong T, Maensiri S (2014) Microelectron Eng 126:118

    Article  Google Scholar 

  23. Kum-onsa P, Thongbai P, Putasaeng B, Yamwong T, Maensiri S (2015) J Eur Ceram Soc 35:1441

    Article  Google Scholar 

  24. Liang P, Li Y, Li F, Chao X, Yang Z (2014) Mater Res Bull 52:42

    Article  Google Scholar 

  25. Yang Z, Liang P, Yang L, Shi P, Chao X, Yang Z (2015) J Mater Sci Mater Electron 26:1959

    Article  Google Scholar 

  26. Ren H, Liang P, Yang Z (2010) Mater Res Bull 45:1608

    Article  Google Scholar 

  27. Liu J, Duan C-G, Yin W-G, Mei W, Smith R, Hardy J (2004) Phys. Rev. B 70:144106

    Article  Google Scholar 

  28. Liu J, Sui Y, Duan C-G, Mei W-N, Smith RW, Hardy JR (2006) Chem Mater 18:3878

    Article  Google Scholar 

  29. Xu B, Zhang J, Tian Z, Yuan SL (2012) Mater Lett 75:87

    Article  Google Scholar 

  30. Su Y, Song J, Liu R, Huang H (2013) J Electroceram 30:166

    Article  Google Scholar 

  31. Liu Z, Jiao G, Chao X, Yang Z (2013) Mater Res Bull 48:4877

    Article  Google Scholar 

  32. Rahaman MN (2003) Ceramic Processing and Sintering, 2nd edn. M. Dekker, New York

    Google Scholar 

  33. Mukherjee S, Gonal MR, Patel MK, Roy M, Patra A, Tyagi AK, Menon M (2012) J Am Ceram Soc 95:290

    Article  Google Scholar 

  34. Wu J, Nan C-W, Lin Y, Deng Y (2002) Phys Rev Lett 89:217601

    Article  Google Scholar 

  35. Meeporn K, Yamwong T, Pinitsoontorn S, Amornkitbamrung V, Thongbai P (2014) Ceram Int 40:15897

    Article  Google Scholar 

  36. Liang P, Li Y, Chao X, Yang Z (2014) Mater Res Bull 60:212

    Article  Google Scholar 

  37. Schmidt R, Stennett MC, Hyatt NC, Pokorny J, Prado-Gonjal J, Li M, Sinclair DC (2012) J Eur Ceram Soc 32:3313

    Article  Google Scholar 

  38. Thongbai P, Putasaeng B, Yamwong T, Amornkitbamrung V, Maensiri S (2014) J Alloys Compd 582:747

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen University. This work was partially supported by the Integrated Nanotechnology Research Center (INRC), Khon Kaen University. W. Tuichai would like to thank the Thailand Graduate Institute of Science and Technology (TGIST) for his Master of Science Degree scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasit Thongbai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuichai, W., Danwittayakul, S., Yamwong, T. et al. Synthesis, dielectric properties, and influences oxygen vacancies have on electrical properties of Na1/2Bi1/2Cu3Ti4O12 ceramics prepared by a urea combustion method. J Sol-Gel Sci Technol 76, 630–636 (2015). https://doi.org/10.1007/s10971-015-3814-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3814-1

Keywords

Navigation