Skip to main content
Log in

Effects of citric acid and urea on the structural and morphological characteristics of BiVO4 synthesized by the sol–gel combustion method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Micro-sized spherical BiVO4 photocatalysts composed of nanoparticles were synthesized by the sol–gel combustion method. The effects of citric acid and urea on the structural and morphological characteristics of samples were studied by X-ray diffraction, field emission scanning electron microscopy, N2 adsorption and desorption and UV–Vis spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of rhodamine B under visible light. The results showed the sphere-shaped BiVO4 sample to have excellent photocatalytic performance compared with the bulk sample prepared by solid-state reaction. This enhancement could be attributed to the special spherical morphology, which enhanced the absorption ability, increased the separation efficiency of photon-generated carriers and improved surface reaction sites for consumption of photon-generated carriers.

Graphical Abstract

Uniform micro-sized spherical BiVO4 samples composed of nanoparticles were successfully synthesized by the sol–gel combustion method. The relationships between the morphologies and citric acid with urea contents were studied by using the field emission scanning electron microscopy (FE-SEM) technology.

FE-SEM images of the samples (A) the samples synthesized with different citric acid contents and (B) the samples synthesized with different urea contents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  Google Scholar 

  2. Liu ZY, Zhang XT, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) J Phys Chem C 112:253–259

    Article  Google Scholar 

  3. Wang YJ, Lu KC, Feng CG (2013) J Rare Earths 31:360–365

    Article  Google Scholar 

  4. Gui MS, Wang PF, Yuan JG, Li YQ, Zeng WG (2014) Adv Mater Res 864:1323–1326

    Google Scholar 

  5. Li D, Duan XC, Qin Q, Fan HM, Zheng WJ (2013) CrystEngComm 15:8933–8936

    Article  Google Scholar 

  6. Feng HY, Hou DF, Huang YH, Hu XL (2014) J Alloys Compd 592:301–305

    Article  Google Scholar 

  7. Li RG, Zhang FX, Wang DE, Yang JX, Li MR, Zhu J, Zhou X, Han HX, Li C (2013) Nat Commun 4:1432

    Article  Google Scholar 

  8. Lim AR, Lee KH, Choh SH (1992) Solid State Commun 83:185–186

    Article  Google Scholar 

  9. Yeom TH, Choh SH, Song KJ, Jang MS (1994) J Phys Condens Matter 6:383–392

    Article  Google Scholar 

  10. Vinke IC, Diepgrond J, Boukamp BA, de Vries KJ, Burggraaf AJ (1992) Solid State Ionics 57:83–89

    Article  Google Scholar 

  11. Thalluri SM, Hussain M, Saracco G, Barber J, Russo N (2014) Ind Eng Chem Res 53:2640–2646

    Article  Google Scholar 

  12. Lu Y, Luo YS, Xiao HM, Fu SY (2014) CrystEngComm 16:6059–6065

    Article  Google Scholar 

  13. Obregón S, Colón G (2013) J Mol Catal A Chem 376:40–47

    Article  Google Scholar 

  14. Gao XH, Wu HB, Zheng LX, Zhong YJ, Hu Y, Lou XW (2014) Angew Chem 126:6027–6031

    Article  Google Scholar 

  15. Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H (2006) J Phys Chem B 110:11352–11360

    Article  Google Scholar 

  16. Iwase A, Kudo A (2010) J Mater Chem 20:7536–7542

    Article  Google Scholar 

  17. Nagabhushana GP, Nagaraju G, Chandrappa GT (2013) J Mater Chem A 1:388–394

    Article  Google Scholar 

  18. García-Pérez UM, Martínez-de la Cruz A, Sepúlveda-Guzmán S, Peral J (2014) Ceram Int 40:4631–4638

    Article  Google Scholar 

  19. Sleight AW, Chen HY, Ferretti A, Cox DE (1979) Mater Res Bull 14:1571–1581

    Article  Google Scholar 

  20. Liu GS, Liu SW, Lu QF, Sun HY, Xu FX, Zhao G (2014) J Sol–Gel Sci Technol 70:24–32

    Article  Google Scholar 

  21. Wang M, Che YS, Niu C, Dang MY, Dong D (2013) J Hazard Mater 262:447–455

    Article  Google Scholar 

  22. Yu JQ, Zhang Y, Kudo A (2009) J Solid State Chem 182:223–228

    Article  Google Scholar 

  23. Martínez-de Cruz A, García-Pérez UM (2010) Mater Res Bull 45:135–141

    Article  Google Scholar 

  24. Tan GQ, Zhang LL, Ren HJ, Wei SS, Huang J, Xia A (2013) ACS Appl Mater Interfaces 5:5186–5193

    Article  Google Scholar 

  25. Ge M, Liu L, Chen W, Zhou Z (2012) CrystEngComm 14:1038–1044

    Article  Google Scholar 

  26. Lin X, Li HJ, Yu LL, Zhao H, Yan YS, Liu CB, Zhai HJ (2013) Mater Res Bull 48:4424–4429

    Article  Google Scholar 

  27. Neves MC, Trindade T (2002) Thin Solid Films 406:93–97

    Article  Google Scholar 

  28. Liu W, Yu YQ, Cao LX, Su G, Liu XY, Zhang L, Wang YG (2010) J Hazard Mater 181:1102–1108

    Article  Google Scholar 

  29. Zhou L, Wang WZ, Liu SW, Zhang LS, Xu HL, Zhu W (2006) J Mol Catal A Chem 252:120–124

    Article  Google Scholar 

  30. Lin ZJ, Liu SH, Sun XD, Xie M, Li JG, Li XD, Chen YT, Chen JL, Huo D, Zhang M, Zhu Q, Liu MM (2014) J Alloys Compd 588:30–35

    Article  Google Scholar 

  31. Fujimoto I, Wang NN, Saito R, Miseki Y, Gunji T, Sayama K (2014) Int J Hydrog Energy 39:5202–5203

    Article  Google Scholar 

  32. García-Pérez UM, Sepúlveda-Guzmán S, Martínez-de la Cruz A, Ortiz Méndez U (2011) J Mol Catal A Chem 335:169–175

    Article  Google Scholar 

  33. Guan ML, Ma DK, Hu SW, Chen YJ, Huang SM (2010) Inorg Chem 50:800–805

    Article  Google Scholar 

  34. Xi GC, Ye JH (2010) Chem Commun 46:1893–1895

    Article  Google Scholar 

  35. Xing XY, Ma YX, Li J, Fan GY, Ding HF, Ma XM, Yang L, Xi GX (2014) CrystEngComm 16:10218–10226

    Article  Google Scholar 

  36. Jiang HQ, Endo H, Natori H, Nagai M, Kobayashi K (2008) J Eur Ceram Soc 28:2955–2962

    Article  Google Scholar 

  37. Enesca A, Duta A, Schoonman J (2007) Thin Solid Films 515:6371–6374

    Article  Google Scholar 

  38. Kakihana M (1996) J Sol–Gel Sci Technol 6:7–55

    Article  Google Scholar 

  39. Zhang RJ, Huang JJ, Zhao JT, Sun ZQ, Wang Y (2007) Energy Fuels 21:2682–2687

    Article  Google Scholar 

  40. Dong SY, Yu CF, Li YK, Li YH, Sun JH, Geng XF (2014) J Solid State Chem 211:176–183

    Article  Google Scholar 

  41. Saison T, Gras P, Chemin N, Chanéac C, Durupthy O, Brezova V, Colbeau-Justin C, Jolivet JP (2013) J Phys Chem C 117:22656–22666

    Article  Google Scholar 

  42. Yao MM, Liu MX, Gan LH, Zhao FQ, Fan XZ, Zhu DZ, Xu ZJ, Hao ZX, Chen LW (2013) Colloids Surf A 433:132–138

    Article  Google Scholar 

  43. Zhang YY, Guo YP, Duan HN, Li H, Sun CY, Liu HZ (2014) Phys Chem Chem Phys 16:24519–24526

    Article  Google Scholar 

  44. Geng YL, Zhang P, Kuang SP (2014) RSC Adv 4:46054–46059

    Article  Google Scholar 

  45. Ou M, Zhong Q, Zhang SL (2014) J Sol–Gel Sci Technol 72:443–454

    Article  Google Scholar 

  46. Dong SY, Feng JL, Li YK, Hu LM, Liu ML, Wang YF, Pi YQ, Sun JY, Sun JH (2014) Appl Catal B Environ 152:413–424

    Article  Google Scholar 

  47. Qiu XQ, Li LP, Zheng J, Liu JJ, Sun XF, Li GS (2008) J Phys Chem C 112:12242–12248

    Article  Google Scholar 

  48. Zhang J, Cui H, Wang B, Li C, Zhai JP, Li Q (2014) Appl Surf Sci 300:51–57

    Article  Google Scholar 

  49. Dufour F, Pigeot-Remy S, Durupthy O, Cassaignon S, Ruaux V, Torelli S, Mariey L, Maugé F, Chanéac C (2015) Appl Catal B Environ 174–175:350–360

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21203170 and 41472042), the National College Students’ Innovative Training Program (Grant Nos. 201410491024 and 201310491019) and the Fundamental Research Founds for National University (Grant Nos. 1410491B04 and 1510491B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxia Wang or Dawei Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, J., Meng, D. et al. Effects of citric acid and urea on the structural and morphological characteristics of BiVO4 synthesized by the sol–gel combustion method. J Sol-Gel Sci Technol 76, 562–571 (2015). https://doi.org/10.1007/s10971-015-3806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3806-1

Keywords

Navigation