Skip to main content
Log in

Synthesis of monoclinic BiVO4 microribbons by sol–gel combined with electrospinning process and photocatalytic degradation performances

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Quasi one-dimensional (1D) BiVO4 microribbons were prepared by sol–gel combined with electrospinning method. The prepared samples were characterized with thermogravimeter, differential scanning calorimeter, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV–vis absorbance spectroscopy. The as-prepared products showed a well-defined ribbon structure with 2–3 μm in width, tens of microns in length and about 0.4 μm in thickness, respectively and exhibited excellent photocatalytic activity in the photodegradation of methylene blue under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tokunaga S, Kato H, Kudo A (2011) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13:4624–4628

    Article  Google Scholar 

  2. Zhang L, Chen DR, Jiao XL (2006) Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J Phys Chem B 110:2668–2673

    Article  Google Scholar 

  3. Saison T, Chemin N, Chaneac C, Durupthy O, Ruaux V, Mariey L, Mauge F, Beaunier P, Jolivet JP (2011) Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J Phys Chem C 115:5657–5666

    Article  Google Scholar 

  4. Guo Y, Yang X, Ma F, Li K, Xu L, Yuan X (2010) Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation. Appl Surf Sci 256:2215–2222

    Article  Google Scholar 

  5. Bhattacharya AK, Mallick KK, Hartridge A (1997) Phase transition in BiVO4. Mater Lett 30:7–13

    Article  Google Scholar 

  6. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467

    Article  Google Scholar 

  7. Sayama K, Nomura A, Zou ZG, Abe R, Abe Y, Arakawa H (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 39:2908–2909

    Google Scholar 

  8. Kohtani S, Makino S, Kudo A, Tokumura K, Ishigaki Y, Matsunaga T, Nikaido O, Hayakawa K, Nakagaki R (2002) Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: comparison between BiVO4 and TiO2 photocatalysts. Chem Lett 31:660–661

    Article  Google Scholar 

  9. Meng X, Zhang L, Dai H, Zhao Z, Zhang R, Liu Y (2011) Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4. Mater Chem Phys 125:59–65

    Article  Google Scholar 

  10. Zhou L, Wang W, Liu S, Zhang L, Xu H (2006) A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A Chem 252:120–124

    Article  Google Scholar 

  11. Anpo M, Nakaya H, Kodama S, Kubokawa Y, Domen K, Onishi T (1986) Photocatalysis over binary metal oxides: enhancement of the photocatalytic activity of titanium dioxide in titanium–silicon oxides. J Phys Chem 90:1633–1636

    Article  Google Scholar 

  12. Zhou B, Zhao X, Liu H, Qu J, Huang CP (2010) Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl Catal B Environ 99:214–221

    Article  Google Scholar 

  13. Barreca D, Depero LE, Noto VD, Rizzi GA, Sangaletti L, Tondello E (1999) Thin films of bismuth vanadates with modifiable conduction properties. Chem Mater 11:255–261

    Article  Google Scholar 

  14. Zhao G, Liu S, Lu Q, Song L (2012) Controllable synthesis of Bi2WO 6 nanofibrous mat by electrospinning and enhanced visible photocatalytic degradation performances. Ind Eng Chem Res 51:10307–10312

    Article  Google Scholar 

  15. Zhang M, Shao C, Zhang P, Su C, Zhang X, Liang P, Sun Y, Liu Y (2012) Bi2MoO6 microtubes: controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. J Hazard Mater 225–226:155–163

    Article  Google Scholar 

  16. Ren P, Fan H, Wang X (2012) Electrospun nanofibers of ZnO/BaTiO3 heterostructures with enhanced photocatalytic activity. Catal Commun 25:32–35

    Article  Google Scholar 

  17. Du YK, Yang P, Mou ZG, Hua NP, Jiang L (2006) Thermal decomposition behaviors of PVP coated on platinum nanoparticles. J Appl Polym Sci 99:23–26

    Article  Google Scholar 

  18. Zhang X, Ai Z, Jia F, Zhang L (2008) Generalized One-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. J Phys Chem C 112:747–753

    Article  Google Scholar 

  19. Hyun SP, Kyoung EK, Heechang Y, Eunsu P, Gyeong SH, Allen JB (2011) Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C 115:17870–17879

    Article  Google Scholar 

  20. Peuravuori J, Monteiro A, Eglite L, Pihlaja K (2005) Comparative study for separation of aquatic humic-type organic constituents by DAX-8, PVP and DEAE sorbing solids and tangential ultrafiltration: elemental composition, size-exclusion chromatography, UV–vis and FT-IR. Talanta 65:408–422

    Article  Google Scholar 

  21. Li H, Liu G, Duan X (2009) Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties. Mater Chem Phys 115:9–13

    Article  Google Scholar 

  22. Jin Y, Yang D, Kang D, Jiang X (2010) Fabrication of necklace-like structures via electrospinning. Langmuir 26:1186–1190

    Article  Google Scholar 

  23. Li Y, Wang J, Yao H, Dang L, Li Z (2011) Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J Mol Catal A Chem 334:116–122

    Article  Google Scholar 

  24. Lin H, Huang CP, Li W, Ni C, Shah SI (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11

    Article  Google Scholar 

  25. Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phy Chem 95:525–532

    Article  Google Scholar 

  26. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  Google Scholar 

  27. Kayanuma Y (1988) Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797–9805

    Article  Google Scholar 

  28. Shi R, Huang GL, Lin J, Zhu YF (2009) Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution. J Phys Chem C 113:19633–19688

    Article  Google Scholar 

  29. Fan H, Jiang T, Li H, Wang D, Wang L, Zhai J, He D, Wang P, Xie T (2012) Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J Phys Chem C 116:2425–2430

    Article  Google Scholar 

  30. Chatchai P, Murakami Y, Kishioka S, Nosaka AY (2009) Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation. Electrochim Acta 54:1147–1152

    Article  Google Scholar 

  31. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photoch Photobio C 1:1–21

    Article  Google Scholar 

  32. Houas A, Lachheb H, Ksibi M, Elaloui E (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157

    Article  Google Scholar 

  33. Zhang J, Cui H, Wang B, Li C, Zhai J, Li Q (2013) Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application. Chem Eng J 223:737–746

    Article  Google Scholar 

  34. Martínez-de la Cruz A, García-Pérez UM, Sepúlveda-Guzmán S (2013) Characterization of the visible-light-driven BiVO4 photocatalyst synthesized via a polymer-assisted hydrothermal method. Res Chem Intermed 39:881–894

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51172133), Key Project of Chinese Ministry of Education (Grant No. 211098), Project of university innovation of Jinan (Grant No. 201311034) and Ministry of Education of Shandong Province (Grant No. J13LA01). The authors also thank the Analytical Center of Qilu University of Technology for technological support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwen Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Liu, S., Lu, Q. et al. Synthesis of monoclinic BiVO4 microribbons by sol–gel combined with electrospinning process and photocatalytic degradation performances. J Sol-Gel Sci Technol 70, 24–32 (2014). https://doi.org/10.1007/s10971-014-3269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3269-9

Keywords

Navigation