Skip to main content

Advertisement

Log in

Preparation of poly(aryl ether ketone ketone)–silica composite aerogel for thermal insulation application

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, poly(aryl ether ketone ketone) (PEKK) with trimethoxysilane pendant groups was prepared first and then chemically cross-linked PEKK–silica composite wet gel was formed through the hydrolysis and condensation reactions of the trimethoxysilane pendant groups at room temperature. 29Si solid-state nuclear magnetic resonance indicated that 70.5 % of the methoxy groups on silicon participated in the condensation reaction. The formed PEKK–silica composite wet gel was dried by freeze-drying from tert-butanol to obtain PEKK–silica composite aerogel, which consisted of polymer fibers tangled together. By adjusting the concentration of PEKK with trimethoxysilane pendant groups in solution, PEKK–silica composite aerogels with different densities (ranging from 0.17 to 0.40 g/cm3) were obtained. The resulting aerogels had small average pore diameters (ranging from 25.0 to 59.4 nm), high surface areas (ranging from 299 to 354 m2/g), low thermal conductivities (ranging from 0.024 to 0.035 W/m K at room temperature) and good mechanical property. Although PEKK lost crystallization ability after incorporating trimethoxysilane pendant groups, the cross-linked PEKK still had a storage modulus as high as 1026 MPa at 300 °C. So, even after being heated at 250 °C for 30 min in air, the pore structure of PEKK–silica composite aerogel was still intact.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Koebel M, Rigacci A, Achard P (2012) J Sol-Gel Sci Technol 63:315–339

    Article  Google Scholar 

  2. Hüsing N, Schubert U (1998) Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  3. Shi JJ, Lu LB, Guo WT, Zhang JY, Cao Y (2013) Carbohyd Polym 98:282–289

    Article  Google Scholar 

  4. Luo YW, Ye CH (2012) Polymer 53:5699–5705

    Article  Google Scholar 

  5. Li LC, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) ACS Appl Mater Interfaces 1:2491–2501

    Article  Google Scholar 

  6. Koebel MM, Rigacci A, Achard P (2011) In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York

    Google Scholar 

  7. Pierre AC, Pajonk GM (2002) Chem Rev 102:4243–4265

    Article  Google Scholar 

  8. Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Science 255:971–972

    Article  Google Scholar 

  9. Guo HQ, Meador MAB, McCorkle L, Quade DJ, Guo J, Hamilton B, Cakmak M, Sprow G (2011) ACS Appl Mater Interfaces 3:546–552

    Article  Google Scholar 

  10. Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Renew Sustain Energ Rev 34:273–299

    Article  Google Scholar 

  11. Kamiuto K, Miyamoto T, Saitoh S (1999) Appl Energ 62:113–123

    Article  Google Scholar 

  12. Zhang G, Dass A, Rawashdeh AM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MAB, Leventis N (2004) J Non-Cryst Solids 350:152–164

    Article  Google Scholar 

  13. Woignier T, Phalippou J (1988) J Non-Cryst Solids 100:404–408

    Article  Google Scholar 

  14. Zhao JJ, Duan YY, Wang XD, Wang BX (2012) Int J Heat Mass Transf 55:5196–5204

    Article  Google Scholar 

  15. Duan YN, Jana SC, Lama B, Espe MP (2013) Langmuir 29:6156–6165

    Article  Google Scholar 

  16. Maleki H, Durães L, Portugal A (2014) J Non-Cryst Solids 385:55–74

    Article  Google Scholar 

  17. Mulik S, Sotiriou-Leventis C, Churu G, Lu HB, Leventis N (2008) Chem Mater 20:5035–5046

    Article  Google Scholar 

  18. Lee JK, Gould GL, Rhine W (2009) J Sol-Gel Sci Technol 49:209–220

    Article  Google Scholar 

  19. Tan C, Fung BM, Newman JK, Vu C (2001) Adv Mater 13:644–646

    Article  Google Scholar 

  20. Leventis N, Sotiriou-Leventis C, Chandrasekaran N, Mulik S, Larimore ZJ, Lu HB, Churn G, Mang J (2010) Chem Mater 22:6692–6710

    Article  Google Scholar 

  21. Leventis N, Chidambareswarapattar C, Mohite DP, Larimore ZJ, Lu HB, Sotiriou-Leventis C (2011) J Mater Chem 21:11981–11986

    Article  Google Scholar 

  22. Ding BB, Cai J, Huang JC, Zhang LN, Chen Y, Shi XW, Du YM, Kuga S (2012) J Mater Chem 22:5801–5809

    Article  Google Scholar 

  23. Yang J, Li SK, Yan LL, Liu JX, Wang FC (2010) Micropor Mesopor Mater 133:134–140

    Article  Google Scholar 

  24. Pei XL, Zhai WT, Zheng WG (2014) Langmuir 30:13375–13383

    Article  Google Scholar 

  25. Dai RY, Song CS, Zhong M, Xu L, Huang H (2007) J Jiangxi Normal Univ (Natural science) 31:518–522

    Google Scholar 

  26. Daniel C, Longo S, Ricciardi R, Reverchon E, Guerra G (2013) Macromol Rapid Commun 34:1194–1207

    Article  Google Scholar 

  27. Daniel C, Vitillo JG, Fasano G, Guerra G (2011) ACS Appl Mater Interfaces 3:969–977

    Article  Google Scholar 

  28. Peterson G, Cychosz KA, Thommes M, Hope-Weeks LJ (2012) Chem Commun 48:11754–11756

    Article  Google Scholar 

  29. Figueroa-Gerstenmaier S, Daniel C, Milano G, Vitillo JG, Zavorotynska O, Spoto G, Guerra G (2010) Macromolecules 43:8594–8601

    Article  Google Scholar 

  30. Bang A, Buback C, Sotiriou-Leventis C, Leventis N (2014) Chem Mater 26:6979–6993

    Article  Google Scholar 

  31. Mahadik-Khanolkar S, Donthula S, Sotiriou-Leventis C, Leventis N (2014) Chem Mater 26:1303–1317

    Article  Google Scholar 

  32. Schwan M, Ratke L (2013) J Mater Chem A 1:13462–13468

    Article  Google Scholar 

  33. Yang X, Cranston ED (2014) Chem Mater 26:6016–6025

    Article  Google Scholar 

  34. Williams JC, Meador MAB, McCorkle L, Mueller C, Wilmoth N (2014) Chem Mater 26:4163–4171

    Article  Google Scholar 

  35. Meador MAB, McMillon E, Sandberg A, Barrios E, Wilmoth NG, Mueller CH, Miranda FA (2014) ACS Appl Mater Interfaces 6:6062–6068

    Article  Google Scholar 

  36. Hsiap BS, Gardner KH, Cheng SZD (1994) J Polym Sci Polym Phys 32:2585–2594

    Article  Google Scholar 

  37. Gardner KH, Hsiao BS, Matheson RR Jr, Wood BA (1992) Polymer 33:2483–2495

    Article  Google Scholar 

  38. Son YG, Chun YS, Weiss RA (2004) Polym Eng Sci 44:541–547

    Article  Google Scholar 

  39. Zolotukhin MG, Colquhoun HW, Sestiaa LG, Rueda DR, Flot D (2003) Macromolecules 36:4766–4771

    Article  Google Scholar 

  40. Dorcheh AS, Abbasi MH (2008) J Mater Process Technol 199:10–26

    Article  Google Scholar 

  41. Loyt DA, Shea KJ (1995) Chem Rev 95:1431–1442

    Article  Google Scholar 

  42. Chidambareswarapattar C, McCarver PM, Luo HY, Lu HB, Sotiriou-Leventis C, Leventis N (2013) Chem Mater 25:3205–3224

    Article  Google Scholar 

  43. Loy DA, Jamison GM, Baugher BM, Russick EM, Assink RA, Prabakar S, Shea KJ (1995) J Non-Cryst Solids 186:44–53

    Article  Google Scholar 

  44. Komori Y, Nakashima H, Hayashi S, Sugahara Y (2005) J Non-Cryst Solids 351:97–103

    Article  Google Scholar 

  45. Hua J, Han Y (2009) Chem Mater 21:2344–2348

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant No. 51403226) and Natural Science Foundation of Ningbo City, China (Grant No. 2014A610139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueliang Pei or Wenge Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, X., Zhai, W. & Zheng, W. Preparation of poly(aryl ether ketone ketone)–silica composite aerogel for thermal insulation application. J Sol-Gel Sci Technol 76, 98–109 (2015). https://doi.org/10.1007/s10971-015-3756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3756-7

Keywords

Navigation