Skip to main content
Log in

Sol–gel synthesis of magnetic TiO2 microspheres and characterization of their in vitro heating ability for hyperthermia treatment of cancer

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Common cancer treatments are invasive and lack specificity, leading to unwanted side effects. Because hyperthermia can kill cancer cells and damage proteins and structures within cells, it has been considered a novel, minimally invasive cancer treatment. However, many hyperthermia treatments cannot heat deep-seated tumors effectively and locally. Heat-generating magnetic microspheres can help address this challenge. However, current research has not produced microspheres that can be sufficiently heated. We prepared magnetic titania (TiO2) microspheres by introducing magnetite nanoparticles (MNPs) into the sol–gel process during water-in-oil emulsion for in situ hyperthermia treatment of cancers. Two types of MNPs were used in this study: One type was synthesized by a chemical coprecipitation method, and the other type was commercially available MNPs. The obtained microspheres contained up to 46.7 wt% MNPs, and their saturation magnetization and coercive force were 34.2 emu/g and 103 Oe, respectively. The particles’ in vitro heating efficiency in an agar phantom was measured in an alternating magnetic field of 300 Oe and 100 kHz. The temperature increase in the agar phantom within 300 s was 4.5 °C for microspheres with MNPs that were synthesized by chemical coprecipitation and 53 °C for microspheres with commercially available MNPs. The excellent heating efficiency of the microspheres may be attributed to the hysteresis losses of the magnetic particles. These microspheres are believed to be promising thermoseeds for hyperthermic treatment of cancer.

Graphical abstract

SEM photographs of magnetic microspheres samples

Time-dependent temperature curves of the agar phantom

Magnetic TiO2 microspheres with a diameter of 7–15 μm were obtained by directly introducing preformed magnetic MNPs into a sol–gel process from TTIP in water-in-oil emulsion. The magnetic TiO2 microspheres containing Fe3O4 at a content higher than 46 wt% increased the temperature of the agar phantom to above 43 °C in 3 min. They are expected to be useful for arterial embolization hyperthermic treatment of cancer, but control of their diameter is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sugihara T (1986) Gan-to-Tatakau-hyperthermia. Kinpoudou, Kyoto

    Google Scholar 

  2. Conway J, Anderson AP (1986) Clin Phys Physiol Meas 7:287–318

    Article  Google Scholar 

  3. Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Margottini M, Mondovi B, Moricca G, Rossi-Fanelli (1967) Cancer 20:1351–1381

    Article  Google Scholar 

  4. Overgaard K, Overgaard J (1972) Eur J Cancer 8:65–78

    Article  Google Scholar 

  5. Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M (2011) J Biomater Appl 25:643–661

    Article  Google Scholar 

  6. Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Biomaterials 26:2231–2238

    Article  Google Scholar 

  7. Kawashita M, Domi S, Saito Y, Aoki M, Ebisawa Y, Kokubo T (2008) J Mater Sci Mater Med 19:1897–1903

    Article  Google Scholar 

  8. Kokubo T, Ebisawa Y, Sugimoto Y, Kiyama M, Ohura K, Yamamuro T, Hiraoka M, Abe M (1990) Bioceramics 3:213–223

    Google Scholar 

  9. Kawashita M, Iwahashi Y, Kokubo T, Yao T, Hamada S, Shinjo T (2004) J Ceram Soc Jpn 112:373–379

    Article  Google Scholar 

  10. Li Z, Kawashita M, Kudo T, Kanetaka H (2012) J Mater Sci Mater Med 23:2461–2469

    Article  Google Scholar 

  11. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Environ Sci Technol 32(5):726–728

    Article  Google Scholar 

  12. Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, Kokubo T, Nakamura T (2005) Biomaterials 26(33):6496–6505

    Article  Google Scholar 

  13. Goto K, Hashimoto M, Takadama H, Tamura J, Fujibayashi S, Kawanabe K, Kokubo T, Nakamura T (2008) J Mater Sci Mater Med 19(3):1009–1016

    Article  Google Scholar 

  14. Li Z, Kawashita M, Doi M (2010) J Ceram Soc Jpn 118(1378):467–473

    Article  Google Scholar 

  15. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) J Biomed Mater Res A 80(2):333–341

    Article  Google Scholar 

  16. Patterson AL (1939) Phys Rev 56(10):978–982

    Article  Google Scholar 

  17. Dong YH, Scardi P (2000) J Appl Cryst 33(1):184–189

    Article  Google Scholar 

  18. Toraya H (1986) J Appl Cryst 19(6):440–447

    Article  Google Scholar 

  19. Luderer AA, Borrelli NF, Panzarino JN, Mansfield GR, Hess DM, Brown JL, Hahn EW (1983) Rad Res 94(1):190–198

    Article  Google Scholar 

  20. Takahashi Y, Ohsugi A, Arafuka T, Ohya T, Ban T, Ohya Y (2000) J Sol-Gel Sci Technol 17(3):227–238

    Article  Google Scholar 

  21. Vaidya S, Tozer KR, Chen J (2008) Semin Interv Radiol 25:204–215

    Article  Google Scholar 

  22. Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M (2010) Mater Sci Eng, C 30(7):990–996

    Article  Google Scholar 

  23. Gao J, Zhang B, Zhang X, Xu B (2006) Angew Chem 118(8):1242–1245

    Article  Google Scholar 

  24. Chantrell RW, Bradbury A, Popplewell J, Charles SW (1982) J Appl Phys 53(3):2742–2744

    Article  Google Scholar 

  25. Kneller EF, Luborsky FE (1963) J Appl Phys 34(3):656–658

    Article  Google Scholar 

  26. Dunlop DJ (1973) J Geophys Res 78(11):1780–1793

    Article  Google Scholar 

  27. Georgea M, Johna AM, Naira SS, Joyb PA, Anantharaman MR (2006) J Magn Magn Mater 302:190–195

    Article  Google Scholar 

  28. Balakrishnan S, Bonder MJ, Hadjipanayis GC (2009) J Magn Magn Mater 321:117–122

    Article  Google Scholar 

  29. Kaiser R, Miskolczy G (1970) J Appl Phys 41:1064–1072

    Article  Google Scholar 

  30. Caizer C, Savii C, Popovici M (2003) Mater Sci Eng, B 97:129–134

    Article  Google Scholar 

  31. Šepelák V, Baabeb D, Mienertb D, Schultzec D, Krumeichd F, Litterstb FJ, Beckera KD (2003) J Magn Magn Mater 257:377–386

    Article  Google Scholar 

  32. Marcelo G, Pérez E, Corrales T, Peinado C (2011) J Phys Chem C 115:25247–25256

    Article  Google Scholar 

  33. Schmiedeskamp J, Elmers HJ, Heil W, Otten EW, Sobolev Y, Kilian W, Rinneberg H, Thömmes T, Seifert F, Zimmer J, Sander F, Zimmer J (2006) Eur Phys J D 38(3):445–454

    Article  Google Scholar 

  34. Zhang LY, Gu H, Wang XM (2007) J Magn Magn Mater 311:228–233

    Article  Google Scholar 

  35. Standard thermodynamic properties of chemical substances(2000) by CRC Press LLC p20. http://www.nist.gov/data/PDFfiles/jpcrdS2Vol11.pdf#search=‘25.+Standard+thermodynamic+properties+of+chemical+substances. Accessed 08 Oct 2014

  36. Motoyama J, Hakata T, Kato R, Yamashita N, Morino T, Kobayashi T, Honda H (2008) Biomagn Res Technol 4:1–9

    Google Scholar 

  37. Hergt R, Andrä W, Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) IEEE Trans Magn 34:3745–3754

    Article  Google Scholar 

  38. Debye P (1929) Polar molecules. Dover, New York

    Google Scholar 

  39. Atsumi T, Jeyadevan B, Sato Y, Tohji K (2006) J Magn Soc Jpn 30:555–560

    Article  Google Scholar 

  40. Landau LD, Lifshitz EM (1960) Course of theoretical physics, vol: 8: Electrodynamics of continuous media. Pergamon Press, Oxford

    Google Scholar 

  41. Kötitz R, Weitschies W, Trahms L, Semmler W (1999) J Magn Magn Mater 201(1):102–104

    Article  Google Scholar 

  42. Xuan S, Wang F, Wang YXJ, Jimmy CY, Leung KCF (2010) J Mater Chem 20(24):5086–5094

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a research grant from the Magnetic Health Science Foundation, Fukuoka, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengci Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Kawashita, M., Li, Z. et al. Sol–gel synthesis of magnetic TiO2 microspheres and characterization of their in vitro heating ability for hyperthermia treatment of cancer. J Sol-Gel Sci Technol 75, 90–97 (2015). https://doi.org/10.1007/s10971-015-3680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3680-x

Keywords

Navigation