Skip to main content
Log in

Formation and characterization of γ-Fe2O3@SiO2@Ag

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fe2O3@SiO2@Ag composites were synthesized, using the coprecipitation method to obtain maghemite nanoparticles coated with SiO2 using the Stöber method to avoid the oxidation, and finally silver nanoparticles were incorporated by a chemical method. The samples were characterized by X-ray diffraction, transmission electron microscopy, IR spectroscopy and vibrating sample magnetometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harris L (2002) PhD Thesis, Virginia Polytechnic Institute and State University (19 April 2002)

  2. Pankhurst QA (2006) BT Technol J 24(3):33–38

    Article  Google Scholar 

  3. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222

    Article  Google Scholar 

  4. Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Adv Mater 19:33

    Article  Google Scholar 

  5. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Chem Rev 108:2064

    Article  Google Scholar 

  6. Yi DK, Lee SS, Papaefthymiou GC, Ying JY (2006) Chem Mater 18:614

    Article  Google Scholar 

  7. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Langmuir 17:2900

    Article  Google Scholar 

  8. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) J Am Chem Soc 127:4990

    Article  Google Scholar 

  9. Fernández-Pacheco R, Arruebo M, Marquina C, Ibarra R, Arbiol J, Santamaría J (2006) Nanotechnology 17:1188

    Article  Google Scholar 

  10. Philipse AP, Van Bruggen MPB, Pathmamanoharan C (1994) Langmuir 10:92

    Article  Google Scholar 

  11. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Nano Lett 2:183

    Article  Google Scholar 

  12. Barnakov YA, Yu MH, Rosenzweig Z (2005) Langmuir 21:7524

    Article  Google Scholar 

  13. Pereira C, Pereira AM, Quaresma P, Tavares PB, Pereira E, Araujo JP, Freire C (2010) Dalton Trans 39:2842–2854

    Article  Google Scholar 

  14. El Mendili Y, Bardeau JF, Grasset F, Greneche JM, Cador O, Guizouarn T, Randrianantoandro N (2014) J Appl Phys 116:053905

    Article  Google Scholar 

  15. Taylor PL, Ussher AL, Burrell RE (2005) Biomaterials 26:7221–7229

    Article  Google Scholar 

  16. Martínez-Castañón G, Niño-Martínez N, Martínez-Gutiérrez F, Martínez-Mendoza JR, Ruiz F (2008) J Nanopart Res 10:1343. doi:10.1007/s11051-008-9428-6

    Article  Google Scholar 

  17. Gao T, Jelle BP, Gustavsen A (2013) J Nanopart Res 15:1370

    Article  Google Scholar 

  18. Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) Langmuir 19(17):6693–6700

    Article  Google Scholar 

  19. Chauhuri RG, Paris S (2012) Chem Rev 112(4):2373–2433

    Article  Google Scholar 

  20. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang SS, Yang X (2007) IOP Publishing Nanotechnology, 18:285604, p 7

  21. Tang D, Yuan R, Chai Y (2006) J Phys Chem B 110:11640–11646

    Article  Google Scholar 

  22. Rosenman KD, Moss A, Kon S (1979) J Occup Med 21:430–435

    Google Scholar 

  23. Cohen SY, Quentel G, Egasse D, Cadot M, Ingster-Moati I, Coscas GJ (1993) Retina 13:312–316

    Article  Google Scholar 

  24. Tartaj P, Morales M, Veintemillas-Verdaguer S, González-Carreño T, Serna C (2003) J Phys D 36:R182–R197

    Article  Google Scholar 

  25. Hyeon T (2003) Chem Commun, 927–934

  26. Shi-Yong Yu, Zhang Hong-Jie, Jiang-Bo Yu, Wang Cheng, Sun Li-Ning, Shi Wei-Dong (2007) Langmuir 23:7836–7840

    Article  Google Scholar 

  27. Zhang Lihua, Liu Baifeng, Dong Shaojun (2007) J Phys Chem 111:10448–10452

    Article  Google Scholar 

  28. Palomares-Sánchez SA, Ponce-Castañeda S, Martínez JR, Ruiz F, Chumakov Y, Domínguez O (2003) J Non Cryst Solids 325:251

    Article  Google Scholar 

  29. Le Bail A (1995) J Non Cryst Solids 183:39

    Article  Google Scholar 

  30. Kandori K, Ohkoshi N, Yasukawa A, Ishikawa T (1998) J Mater Res 13:1698

    Article  Google Scholar 

  31. Li Liping, Li Guangshe, Smith RL Jr, Inomata H (2000) Chem Mater 12:3705

    Article  Google Scholar 

  32. Papaefthymiou GC, Devlin E, Simopoulos A, Yi DK, Riduan SN, Lee SS, Ying JY (2009) Phys Rev B 80:024406

    Article  Google Scholar 

  33. Hiroi K, Komatsu K, Sato T (2011) Phys Rev B 83:224423

    Article  Google Scholar 

  34. Vollath D, Szabó DV, Taylor RD, Willis JO (1997) J Mater Res 12:2175

    Article  Google Scholar 

  35. Paine TO, Mendelson LI, Luborsky FE (1955) Phys Rev 100:1055

    Article  Google Scholar 

  36. Martínez JR, Ortega-Zarzosa G, Domínguez-Espinós O, Ruiz F (2001) Low temperature devitrification of Ag/SiO2 and Ag(CuO)/SiO2 composites. J Non Cryst Solids 282(2–3):317

    Article  Google Scholar 

  37. Duhan S, Devi S, Srivastava M (2010) Indian J Pure Appl Phys 28:271–275

    Google Scholar 

  38. Kamiya K, Dohkai T, Wada M, Hashimoto T, Matsuoka J, Nasu H (1998) J Non Cryst Solids 240:202

    Article  Google Scholar 

  39. Kamiya K, Oka A, Nasu H, Hashimoto T (2000) J Sol-Gel Sci Technol 19:495

    Article  Google Scholar 

  40. Brawer SA, White WB (1975) J Chem Phys 74:2421

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco-Esqueda, I.G., Ortega-Zarzosa, G., Martínez, J.R. et al. Formation and characterization of γ-Fe2O3@SiO2@Ag. J Sol-Gel Sci Technol 74, 734–739 (2015). https://doi.org/10.1007/s10971-015-3656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3656-x

Keywords

Navigation