Skip to main content
Log in

Effect of annealing temperature on structure and magnetic properties of sol–gel synthesized Co0.8Fe2.2O4/SiO2 nanocomposites

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Using SiO2 as amorphous matrix, Co0.8Fe2.2O4/SiO2 nanocomposites were synthesized by sol–gel method. The effect of annealing temperature on structure, cation distribution, and magnetic properties was investigated by X-ray diffraction (XRD), Mössbauer spectroscopy, and vibrating sample magnetometer (VSM). All Co0.8Fe2.2O4 in obtained composites exhibit cubic spinel structure after annealed at 500 °C and above. The particle size of Co0.8Fe2.2O4 increases from 5 to 25 nm as the annealing temperature increases from 500 to 1100 °C. Analysis of Mössbauer and VSM reveal that higher annealing temperature induces the migration of Fe3+ from octahedral B to tetrahedral A sites, which results in the enhancement in magnetic hyperfine field Hin. While the increasing content of Co2+ at B sites and the weakened ‘pinning’ effect of domain wall result in the increase of coercivity Hc. In addition, larger Co0.8Fe2.2O4/SiO2 particles exhibit higher saturation magnetization Ms due to the relative decrease in magnetically disordered content on the Co0.8Fe2.2O4 surface.

The values of Ms and Hc of Co0.8Fe2.2O4/SiO2 nanocomposites increase with annealing temperature and the magnetically disordered surface layer thickness t of Co0.8Fe2.2O4 is estimated to be 0.7 ± 0.02 nm.

Highlights

  1. 1.

    Using sol–gel method, Co0.8Fe2.2O4/SiO2 nanocomposites with varied particle size are prepared by annealed at different temperatures.

  2. 2.

    The Fe3+ migration from octahedral B to tetrahedral A sites induced by higher annealing temperature results in the enhancement in magnetic hyperfine field Hin.

  3. 3.

    The Ms and Hc of as-prepared Co0.8Fe2.2O4/SiO2 nanocomposites increase with increasing annealing temperature.

  4. 4.

    The thickness of the magnetically disordered layer surface of Co0.8Fe2.2O4 in the composites is estimated to be 0.7 ± 0.02 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nelson AT, White JT, Andersson DA, Aguiar JA, McClellan KJ, Byler DD, Short MP, Stanek CR (2014) J Am Ceram Soc 97:1559

    Article  CAS  Google Scholar 

  2. Yu YS, Mendoza-Garcia A, Ning B, Sun SH (2013) Adv Mater 25:3090

    Article  CAS  Google Scholar 

  3. Horvath MP (2000) J Magn Magn Mater 215:171

    Article  Google Scholar 

  4. Jiles DC (2003) Acta Mater 51:5907

    Article  CAS  Google Scholar 

  5. Nasrollahzadeh M, Bagherzadeh M, Karimi H (2016) J Colloid Interf Sci 465:271

    Article  CAS  Google Scholar 

  6. Napppine S, Nagnano E, Bondino F, Pis I, Barla A, Fantechi E, Pineider F, Sangregorio C, Vaccari L, Venturelli L, Baglioni P (2015) J Phys Chem C 119:25529

    Article  Google Scholar 

  7. Ayyappan S, Mahadevan S, Chandramohan P, Srinivasan MP, Philip J, Baldev R (2010) J Phys Chem C 114:6334

    Article  CAS  Google Scholar 

  8. Cedeño-Mattei Y, Perales-Pérez O, Uwakweh ONC (2012) Mater Chem Phys 132:999

    Article  Google Scholar 

  9. Mohaideen KK, Joy PA (2014) J Eur Ceram Soc 4:67

    Google Scholar 

  10. Adolfo FJ, Vivien Z, Paul E (2007) J Appl Phys 101:09M506

    Article  Google Scholar 

  11. Li Y, Fang QQ, Liu YM, Lu QR, Yin P (2007) J Magn Magn Mater 313:57

    Article  CAS  Google Scholar 

  12. Song SH, Lo CCH, Lee SJ, Aldini ST, Snyder JE, Jiles DC (2007) J Appl Phys 101:09C517

    Article  Google Scholar 

  13. Kodama RH, Berkowitz AE (1999) Phys Rev B 59:6321

    Article  CAS  Google Scholar 

  14. Hua J, Liu Y, Wang L, Feng M, Zhao JL, Li HB (2016) J Magn Magn Mater 402:166

    Article  CAS  Google Scholar 

  15. Dipponga T, Levei EA, Cadar O, Goga F, Barbu-Tudoran L, Borodi G (2017) J Anal Appl Pyrol 128:121

    Article  Google Scholar 

  16. Li HB, Chen JY, Liu M, Feng M (2007) J Hua, Chem J Chin U 28:614

    Google Scholar 

  17. Wang L, Li SS, Li J, Liu M, Xu SC, Li HB (2016) RSC Adv 6:12497

    Article  CAS  Google Scholar 

  18. Renard PEL, Lortz R, Senatore C, Rapin JP, Buchegger F, Fink AP, Hofmann H, Doelker E, Jordan O (2011) J Magn Magn Mater 323:1054

    Article  Google Scholar 

  19. Rohilla S, Kumar S, Aghamkar P, Sunder S, Agarwal A (2011) J Magn Magn Mater 323:897

    Article  CAS  Google Scholar 

  20. Plocek J, Hutlov´a A, Nižnansky D, Bursik J, Rehspringer JL, Micka Z (2005) Mater Sci Pol 23:697

    CAS  Google Scholar 

  21. Plocek J, Hutlov´a A, Nižnansky D, Bursik J, Rehspringer JL, Micka Z (2003) J Non-Cryst Solids 315:70

    Article  CAS  Google Scholar 

  22. Gharagozlou M (2010) J Alloy Compd 495:217

    Article  CAS  Google Scholar 

  23. Nadeem K, Krenn H, Shahid M, Letofsky-Papst I (2013) Solid State Sci 19:27

    Article  CAS  Google Scholar 

  24. Garcia-Cerda LA, Torres-Garia VA, Matutes-Aquino JA, Ayaly-Valenzuela OE (2004) J Alloy Compd 369:148

    Article  CAS  Google Scholar 

  25. Prakash I, Nallamuthu N, Muralidharan P, Venkateswarlu M, Misra M, Mohanty A, Satyanarayama N (2011) J Sol–Gel Sci Technol 58:24

    Article  CAS  Google Scholar 

  26. Nambissan PMG, Upadhyay C, Verma HC (2003) J Appl Phys 93:6320

    Article  CAS  Google Scholar 

  27. Limaye MV, Singh SB, Date SK, Kothari D, Reddy VR, Gupta A, Sathe V, Choudhary RJ, Kulkarni SK (2009) J Phys Chem B 113:9070

    Article  CAS  Google Scholar 

  28. Chakraverty S, Mitra S, Mandal K, Nambissan PMG, Chattopadhyay S (2005) Phys Rev B 71:4115

    Google Scholar 

  29. Stoneham AM, Phys. J (1977) C: Solid State Phys 10:1175

    CAS  Google Scholar 

  30. Sahoo SC, Venkataramani N, Prasad S, Bohra M, Krishnan RA (2010) J Appl Phys A 98:889

    Article  CAS  Google Scholar 

  31. Sawatzky GA, Van Der Woude F, Morrish AH (1964) Phys Rev 187:747

    Article  Google Scholar 

  32. Vázquez-Vázquez C, López-Quintela MA, Buján-Núñez MC, Rivas J (2011) J Nanopart Res 13:1663

    Article  Google Scholar 

  33. Erdem D, Bingham NS, Heiligtag FJ, Pilet N, Warnicke P, Heyderman LJ, Niederberger M (2016) Adv Funct Mater 26:1954

    Article  CAS  Google Scholar 

  34. Sreeja V, Vijayanand S, Deka S, Joy PA (2008) Hyperfine Interact 183:99

    Article  CAS  Google Scholar 

  35. Wang L, Lu M, Liu Y, Li J, Liu M, Li H (2015) Ceram Int 41:4176

    Article  CAS  Google Scholar 

  36. Maurya JC, Janrao PS, Datar AA, Kanhe NS, Bhoraskar SV, Mathe VL (2016) J Magn Magn Mater 412:164

    Article  CAS  Google Scholar 

  37. Moumen N, Pileni MP (1996) J Phys Chem 100:1867

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61275047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Hua or Jin Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, M., Ding, S., Hua, J. et al. Effect of annealing temperature on structure and magnetic properties of sol–gel synthesized Co0.8Fe2.2O4/SiO2 nanocomposites. J Sol-Gel Sci Technol 88, 593–600 (2018). https://doi.org/10.1007/s10971-018-4789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4789-5

Keywords

Navigation