Skip to main content

Advertisement

Log in

Nd2O3: novel synthesis and characterization

  • Brief Communication
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present work was focused on producing sustainable Nd2O3 nanoparticles for inhibiting human breast cancer cells. Novel synthesis route was described. Raman, PL, XRD, FTIR, XPS and TEM characterization was explored. Observed Raman Fg and Ag + Eg combination modes confirmed Nd2O3. PL emission bands around ∼352–392 nm (UV), ∼429–472 nm (blue), ∼580 nm (green) and ∼650 nm (red) further confirmed Nd2O3. Highest incubation period clearly exhibits (100) oriented strong XRD characteristic Nd2O3 peak. 413 and 630 cm−1 peaks represent IR characteristic metal–oxygen (Nd–O) vibrations. Nd3d peak shifted to higher binding energy upon increasing incubation period substantiate the presence of bigger particles due to rich Nd structure. 7 days incubation revealed agglomerated Nd2O3 particles (200 nm). 1 day incubated 500 (µg/ml) Nd2O3 dosage could be used as an effective biocompatibility material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Que W, Kam CH, Zhou Y, Lam YL, Chan YC (2001) J Appl Phys 90:4865–4867

    Article  Google Scholar 

  2. Singh J, Soni NC, Srivastava SL (2003) Bull Mater Sci 26:397–399

    Article  Google Scholar 

  3. Delmore F, Harnois C, Monot-Laffez I, Desgardin G (2002) Phys C 372:1127–1130

    Google Scholar 

  4. Tosun G, Rase HF (1972) Ind Eng Chem Prod Res Dev 11:249–260

    Article  Google Scholar 

  5. Chevalier S, Bonnet G, Larpin JP (2000) Appl Surf Sci 167:125–133

    Article  Google Scholar 

  6. Liu T, Zhang Y, Shao H, Li X (2003) Langmuir 19:7569–7572

    Article  Google Scholar 

  7. Kepinski L, Zawadzki M, Mista W (2004) Solid State Sci 6:1327–1336

    Article  Google Scholar 

  8. Zawadzki M, Kepinski L (2004) J Alloys Compd 380:255–259

    Article  Google Scholar 

  9. Yang W, Qi Y, Ma Y, Li X, Guo X, Gao J, Chen M (2004) Mater Chem Phys 84:52–57

    Article  Google Scholar 

  10. Chen Y, Yang L, Feng C, Wen LP (2005) Biochem ##Bio-phys Res Commun 337:52–60

    Article  Google Scholar 

  11. Panda AB, Glaspell G, El-Shall MS (2007) J Phys Chem C 111:1861–1864

    Article  Google Scholar 

  12. Pan TM, Lin CW, Lin JC, Wu MH (2009) Electrochem ##Solid State Lett 12:J96–J99

    Article  Google Scholar 

  13. Dorris A, Sicard C, Chen MC, McDonald AB, Barrett CJ (2011) ACS Appl Mater Interfaces 3:3357–3365

    Article  Google Scholar 

  14. Umesh B, Eraiah B, Nagabhushana H, Nagab-hushana BM, Nagaraje G, Shivakumara C, Chak-radhar RPS (2011) J Alloys Compd 509:1146–1151

    Article  Google Scholar 

  15. Umesh B, Eraiah B, Nagabhushana H, Sharma SC, Sunitha DV, Nagabhushana BM, Shivakumara C, Rao JL, Chakradhar RPS (2012) Spectrochim Acta, Part A 93:228–234

    Article  Google Scholar 

  16. Liqin Q, Kaituo W, Xuehang W, Wenwei W, Sen L, Gengming L (2014) Ceram Int 40:3003–3009

    Article  Google Scholar 

  17. Michel CR, Martinez-Preciado AH, Contreras NLL (2013) Sens Actuators, B 184:8–14

    Article  Google Scholar 

  18. Fan X, Liu H, Zhang X (2014) Appl Phys A114:545–550

    Article  Google Scholar 

  19. Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI (2014) Mater Sci Eng, C 41:17–27

    Article  Google Scholar 

  20. Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI (2014) Mat Lett 128:170–174

    Article  Google Scholar 

  21. Yuvakkumar R, Suresh J, Saravanakumar B, Nathanael AJ, Hong SI, Rajendran V (2015) Spectrochim Acta, Part A 137:250–258

    Article  Google Scholar 

  22. Yuvakkumar R, Nathanael AJ, Hong SI (2014) RSC Adv 4:44495–44499

    Article  Google Scholar 

  23. Yuvakkumar R, Suresh J, Hong SI (2014) Adv Mater Res 952:137–140

    Article  Google Scholar 

  24. Yuvakkumar R, Hong SI (2014) Adv Mater Res 1051:39–42

    Article  Google Scholar 

  25. Elfakir A, Tlemçani TS, Benamar EB, Belayachi A, Gutierrez-Berasategui E, Schmerber G, Balestrieri M, Colis S, Slaoui A, Dinia A, Abd-Lefdil M (2014) J Sol-Gel Sci Technol. doi:10.1007/s10971-014-3518-y

    Google Scholar 

  26. Anandan S, Muthukumaran S, Ashokkumar M (2014) J Sol-Gel Sci Technol 70:133–141

    Article  Google Scholar 

  27. Petrov D, Angelov B (2010) J Sol-Gel Sci Technol 53:227–231

    Article  Google Scholar 

  28. Aghamkar P, Duhan S, Singh M, Kishore N, Sen PK (2008) J Sol-Gel Sci Technol 43:283–290

    Google Scholar 

  29. Baiju KV, Periyat P, Wunderlich W, Pillai PK, Mukundan P, Warrier KGK (2007) J Sol-Gel Sci Technol 43:283–290

    Article  Google Scholar 

  30. Saha S, Chanda S, Dutta A, Sinha TP (2014) J Sol-Gel Sci Technol 69:553–563

    Article  Google Scholar 

  31. Chen G, Wang Y, Zhang F, Liang H, Wang F, Li L (2012) J Sol-Gel Sci Technol 64:564–570

    Article  Google Scholar 

  32. Nakajima T, Nishio K, Ishigaki T, Tsuchiya T (2005) J Sol-Gel Sci Technol 33:107–111

    Article  Google Scholar 

  33. Ge Xing-Xin, Sun Yan-Hui, Liu Cong, Qi Wu-Kai (2009) J Sol-Gel Sci Technol 52:179–187

    Article  Google Scholar 

  34. Barnaby SN, Yu SM, Fath KR, Tsiola A, Khalpari O, Banerjee IA (2011) Nanotechnol 22:225605

    Article  Google Scholar 

  35. Bala I, Bhardwaj V, Hariharan S, Sitterberg J, Bakowsky U, Kumar MNVR (2005) Nanotechnology 16:2819

    Article  Google Scholar 

  36. Yuvakkumar R, Nathanael AJ, Rajendran V, Hong SI (2014) J Sol-Gel Sci Technol 72:198–205

    Article  Google Scholar 

  37. Yuvakkumar R, Elango V, Rajendran V, Kannan N, Prabu P (2011) Synth React Inorg Met-Org Chem 41:309–314

    Article  Google Scholar 

  38. Przewloka SR, Shearer BJ (2002) Holzforschung 56:13–19

    Google Scholar 

  39. Long NV, Thi CM, Yong Y, Cao Y, Wu H, Nogami M (2014) Recent Pat Nanotechnol 8:52–61

    Article  Google Scholar 

  40. Anh Tran T, Krishnamoorthy K, Song YW, Cho SK, Kim SJ (2014) ACS Appl Mater Interfaces 6:2980–2986

    Article  Google Scholar 

  41. Manikandan M, Gopal J, Hasan N, Wu HF (2014) Talanta 130:78–89

    Article  Google Scholar 

  42. Bakht MK, Sadeghic M, Ahmadi SJ, Sadjadi SS, Tenreiro C (2013) Nucl Med Communi 34:5–12

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Basic Atomic Research Institute Program through the National Research Foundation of Korea (2014) and by NRF-2014M1A7A1A01030128, and NRF-2014M3C1A8048818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvakkumar, R., Hong, S.I. Nd2O3: novel synthesis and characterization. J Sol-Gel Sci Technol 73, 511–517 (2015). https://doi.org/10.1007/s10971-015-3629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3629-0

Keywords

Navigation