Skip to main content
Log in

Resistive humidity sensors based on proton-conducting organic–inorganic silicophosphates doped by polyionenes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silicophosphate organic–inorganic nanocomposites synthesized by sol–gel method were studied. Fractal characteristics were investigated by small-angle X-ray scattering and transmission electronic microscopy. A correlation between proton conductivity, composition and structure of system, as well as synthesis conditions is revealed. The dependence of nanocomposite conductivity on alternating current and relative media humidity from 23.5 to 96.5 % was stated, that is evidence of their availability as active media for humidity sensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hirata K, Matsuda A, Hirata T et al (2000) J Sol-Gel Sci Tech 17:61

    Article  Google Scholar 

  2. Matsuda A, Nono Y, Tadanaga K, Minami T, Tatsumisago M (2003) Solid State Ionics 253:162–163

    Google Scholar 

  3. Oubaha M, Smaili M, Etienne P (2003) J Non-Cryst Solids 318:305–308

    Article  Google Scholar 

  4. Wung CJ, Lee K-S, Prasads PN (1992) Polymer 33:4145–4146

  5. Han W-T (1999) J Non-Cryst Solids 259:107–110

    Article  Google Scholar 

  6. Imai Y, Yoshida N, Naka K (1999) Polymer 31:258–260

    Article  Google Scholar 

  7. Deng Z, Wang J, Wu A (1998) J Non-Cryst Solids 225:101–103

    Article  Google Scholar 

  8. Song C, Villemure G (2001) Microporous Mesoporous Mater 44:679–682

    Article  Google Scholar 

  9. Rabinovich L, Glezer V, Wu Z (2001) J Electroanal Chem 504:146–149

    Article  Google Scholar 

  10. Santos LRB, Belin S, Brios V (2003) J Sol-Gel Sci Tech 26:171–173

    Article  Google Scholar 

  11. West GD, Diamond GG, Holland D (2002) J Membr Sci 5175:1–7

    Google Scholar 

  12. Nam CW, Woo SI (1994) Thin Solid Films 237:314–315

    Article  Google Scholar 

  13. Valverde G, Macedo JG, Cruz D (2003) J Sol-Gel Sci Tech 26:605–608

    Article  Google Scholar 

  14. Tadanaga K, Katata N, Minami T (1997) J Am Ceram Soc 80:1040–1042

    Article  Google Scholar 

  15. Armelao L, Barreca D, Moraru B (2003) J Non-Cryst Solids 316:364–367

    Article  Google Scholar 

  16. Sukhyy KM, Belyanovskaya EA (2014) Kozlov YaN, Kolomiyets EV, Sukhyy MP. Appl Therm Eng 64:408–412

    Article  Google Scholar 

  17. Guimaraes AP, Viana APP, Lago RM (2002) J Non-Cryst Solid 304:70–73

    Article  Google Scholar 

  18. Haas-Santo K, Fichtner M, Schubert K (2001) Appl Catalysis A: General 220:79–82

  19. Wu Z, Lee K, Lin Y (2003) J Non-Cryst Solids 320:168–170

    Article  Google Scholar 

  20. Lu Y, Cao G, Kale RP (1999) Chem Mater 11:1223–1226

    Article  Google Scholar 

  21. Biazzotto JC, Vidoto EA, Nascimento OR (2002) J Non-Cryst Solids 304:101–104

    Article  Google Scholar 

  22. Osborne H, Blohowiak KY, Taylor SR (2001) Progr Org Coatings 41:217–220

    Article  Google Scholar 

  23. Lu X, Manners I, Winnik MA (2001) Macromolecules 34:1917–1921

    Article  Google Scholar 

  24. Yang P, Lu M, Song C (2002) J Non-Cryst Solids 304:70–75

    Article  Google Scholar 

  25. Deshpande AV, Kumar U (2002) J Non-Cryst Solids 306:149–152

    Article  Google Scholar 

  26. Czuryszkiewicz A, Ahvenlammi J, Kortesuo P (2002) J Non-Cryst Solids 311:99–103

    Article  Google Scholar 

  27. Pandey PC, Upadhyay S, Tiwari I (2001) Sens Actuators 72:224–226

    Article  Google Scholar 

  28. Mohanty AK, Banerjee S, Komber H, Voit B (2014) Solid State Ionics 254:82–91

    Article  Google Scholar 

  29. Echeverri M, Hamad C, Kyu T (2014) Solid State Ionics 254:92–100

    Article  Google Scholar 

  30. Gomza YuP, Klepko VV, Nesin SD, Sukhyy KM, Burmistr EM (2006) In: El’skaya AV, Pokhodenko VD (ed) Investigation on sensor systems and technologies, Kyiv, Ukraine

  31. Vonk CG (1977) Programm for the processing of small-angle X-ray scattering data FFSAXS. Version 3,- DSM, Geleen, Netherlands

  32. Beaucage G (1995) J Appl Cryst 28:717–728

    Article  Google Scholar 

  33. Beaucage G (1996) J Appl Cryst 29:134–146

    Article  Google Scholar 

  34. Hyeon-Lee J, Beaucage G, Pratsinis SE (1997) Chem Mater 9:2400–2403

    Article  Google Scholar 

  35. Hyeon-Lee J, Beaucage G, Pratsinis SE, Vemury S (1998) Langmuir 14:5751–5756

    Article  Google Scholar 

  36. Vonk CG (1976) J Appl Cryst 9:433

    Article  Google Scholar 

  37. Sakai Y, Sadaoka Y, Matsuguchi M (1989) J Electrochem Soc 136:171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Кostyantyn M. Sukhyy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhyy, К.M., Gomza, Y.P., Belyanovskaya, E.A. et al. Resistive humidity sensors based on proton-conducting organic–inorganic silicophosphates doped by polyionenes. J Sol-Gel Sci Technol 74, 472–481 (2015). https://doi.org/10.1007/s10971-015-3622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3622-7

Keywords

Navigation