Skip to main content
Log in

Analysis of Structural, Optical and Electronic Properties of Polymeric Nanocomposites/Silicon Carbide for Humidity Sensors

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The nanocomposites are really promising for industrial, environmental and medical applications. In this work, new types of nanocomposites have been prepared from (PVA–TiO2) nanocomposites doped by SiC nanoparticles for humidity sensor with high sensitivity, flexible, high corrosion resistance and low cost. The experimental and theoretical studies on structural and optical properties of (PVA–TiO2–SiC) nanocomposites have been investigated. The optical microscope and FTIR studies were examined. The optical properties of nanocomposites were examined in wavelength range (220–800) nm. The results showed that the optical absorbance of (PVA–TiO2) nanocomposites increases with increasing of the SiC nanoparticles concentrations. The energy band gap of (PVA–TiO2) nanocomposites decreases while the optical constants increase with the increase in SiC nanoparticles concentrations. The (PVA–TiO2–SiC) nanocomposites tested for humidity sensors at relative humidity range (40–80) RH.%. The experimental results showed that the electrical resistance for (PVA–TiO2–SiC) nanocomposites decreases with increase in relative humidity. The (PVA–TiO2–SiC) nanocomposites have highly sensitivity for relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B.C. Yadav, S. Sikarwar, A. Bhaduri, P. Kumar, Characterization and development of opto-electronic humidity sensor using copper oxide thin film. Int. Adv. Res. J. Sci. Eng. Technol. 2, 105–109 (2015)

    Google Scholar 

  2. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014)

    Article  Google Scholar 

  3. Y. Wang, Fabrication of relative humidity sensors based on polyimide nanoparticles, Doctoral dissertation, Applied Sciences: School of Engineering Science (2013)

  4. S. Karthick, H.S. Lee, S.J. Kwon, R. Natarajan, V. Saraswathy, Standardization, calibration, and evaluation of tantalum-nano rGO–SnO2 composite as a possible candidate material in humidity sensors. Sensors 16(12), 2079 (2016)

    Article  Google Scholar 

  5. A. Zainelabdin, G. Amin, S. Zaman, O. Nur, J. Lu, L. Hultman, M. Willander, CuO/ZnO nanocorals synthesis via hydrothermal technique: growth mechanism and their application as humidity sensor. J. Mater. Chem. 22(23), 11583–11590 (2012)

    Article  Google Scholar 

  6. T. Fei, K. Jiang, S. Liu, T. Zhang, Humidity sensor based on a cross-linked porous polymer with unexpectedly good properties. RSC Adv. 4(41), 21429–21434 (2014)

    Article  Google Scholar 

  7. M. Hdidar, S. Chouikhi, A. Fattoum, M. Arous, A. Kallel, Influence of TiO2 rutile doping on the thermal and dielectric properties of nanocomposite films based PVA. J. Alloys Compd. 750, 375–383 (2018)

    Article  Google Scholar 

  8. J.H. Jang, J.I. Han, Cylindrical relative humidity sensor based on poly-vinyl alcohol (PVA) for wearable computing devices with enhanced sensitivity. Sens. Actuators A 261, 268–273 (2017)

    Article  Google Scholar 

  9. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, T. Sheela, P.K. Pujari, J. Naik, B. Poojary, Pressure sensitive dielectric properties of TiO2 doped PVA/CN-Li nanocomposite. J. Polym. Res. 22(2), 6 (2015)

    Article  Google Scholar 

  10. S.B. Aziz, M.A. Rasheed, S.R. Saeed, O.G. Abdullah, Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in situ chemical reduction technique. Int. J. Electrochem. Sci 12, 3263–3274 (2017)

    Article  Google Scholar 

  11. T.S. Gaaz, A.B. Sulong, M.N. Akhtar, A.A.H. Kadhum, Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20, 22833–22847 (2015). https://doi.org/10.3390/molecules201219884

    Article  Google Scholar 

  12. D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems (Wiley, New York, 2001)

    Book  Google Scholar 

  13. M. Joshi, R.P. Singh, Cross linking polymers (PVA & PEG) with TiO2 nanoparticles for humidity sensing. Sens. Transducers 110(11), 105 (2009)

    Google Scholar 

  14. M.M. El-Desoky, I.M. Morad, M.H. Wasfy, A.F. Mansour, Structural and optical properties of TiO2/PVA nanocomposites. IOSR J. Appl. Phys. (IOSR-JAP) 9(5), 33–43 (2017)

    Google Scholar 

  15. Z.J. Zhong, Optical Properties and Spectroscopy of Nanomaterials (World Scientific, Singapore, 2009)

    Book  Google Scholar 

  16. S. Ilican, M. Caglar, Y. Caglar, The effect of deposition parameters on the physical properties of CdxZn1-xS films deposited by spray pyrolysis method. J. Optoelectron. Adv. Mater. 9(5), 1414–1417 (2007)

    Google Scholar 

  17. T.K. Hamad, R.M. Yusop, B. Abdullah, E. Yousif, Laser induced modification of the optical properties of nano-ZnO doped PVC films. Int. J. Polym. Sci. 2014, 787595 (2014). https://doi.org/10.1155/2014/787595

    Article  Google Scholar 

  18. A.A. Nathan, A. Onoja, A. Amah, Influence of PVA, PVP on crystal and optical properties of europium doped strontium aluminate nanoparticles. Am. J. Eng. Res. 4(4), 85–91 (2015)

    Google Scholar 

  19. S. Suresh, Investigation of the optical and dielectric properties of the urea L-malic acid NLO single crystal. Am. Chem. Sci. J. 3(3), 325–337 (2013)

    Article  Google Scholar 

  20. K.C. Lalithambika, K. Shanthakumari, S. Sriram, Optical properties of CdO thin films deposited by chemical bath method. Int. J. ChemTech Res. 6(5), 3071–3077 (2014)

    Google Scholar 

  21. F.E. Ghodsi, H. Absalan, Comparative study of ZnO thin films prepared by different sol–gel route. Acta Phys. Pol. Ser. A Gen. Phys. 118(4), 659 (2010)

    Article  Google Scholar 

  22. M.A. Gaffar, A.A. El-Fadl, S.B. Anooz, Influence of strontium doping on the indirect band gap and optical constants of ammonium zinc chloride crystals. Physica B 327(1), 43–54 (2003)

    Article  Google Scholar 

  23. N.G. Imam, M.B. Mohamed, Environmentally friendly Zn0.75Cd0.25S/PVA hetero system nanocomposite: UV-stimulated emission and absorption spectra. J. Mol. Struct. 1105, 80–86 (2016)

    Article  Google Scholar 

  24. P. Atkins, J. De Paula, Physical Chemistry for the Life Sciences (Oxford University Press, Oxford, 2011)

    Google Scholar 

  25. E. Kavitha, N. Sundaraganesan, S. Sebastian, Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method. Ind. J. Pure Appl. Phys. 48, 20–30 (2010)

    Google Scholar 

  26. R.V. Hoffman, Organic Chemistry: An Intermediate Text (Wiley, New York, 2004)

    Book  Google Scholar 

  27. N.A. Elmarzugi, T. Adali, A.M. Bentaleb, E.I. Keleb, A.T. Mohamed, A.M. Hamza, Spectroscopic characterization of PEG-DNA biocomplexes by FTIR. J. Appl. Pharm. Sci. 4(8), 6 (2014)

    Google Scholar 

  28. N. Arsalani, H. Fattahi, M. Nazarpoor, Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym. Lett. 4(6), 329–338 (2010)

    Article  Google Scholar 

  29. D. Kumar, S.K. Jat, P.K. Khanna, N. Vijayan, S. Banerjee, Synthesis, characterization, and studies of PVA/Co-Doped ZnO nanocomposite films. Int. J. Green Nanotechnol. 4(3), 408–416 (2012)

    Article  Google Scholar 

  30. A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20(1), 43 (2013)

    Article  Google Scholar 

  31. G.A.M. Amin, M.H. Abd-El Salam, Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. Mater. Res. Express 1(2), 025024 (2014)

    Article  Google Scholar 

  32. A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018)

    Article  Google Scholar 

  33. A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym. Mater. 28(4), 1394–1401 (2018)

    Article  Google Scholar 

  34. I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites:(PVA–PEG–PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21(2), 397–403 (2017)

    Article  Google Scholar 

  35. A.M. Abdelghany, E.M. Abdelrazek, D.S. Rashad, Impact of in situ preparation of CdS filled PVP nano-composite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130, 302–308 (2014)

    Article  Google Scholar 

  36. A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62(11), 978–983 (2017)

    Article  Google Scholar 

  37. N.B. Kumar, V. Crasta, B.M. Praveen, Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10-98) doped by ZnO nanoparticles. Phys. Res. Int. 2014 (2014)

  38. A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci. Mater. Electron. 29(12), 10369–10394

  39. S.C. Nagaraju, A.S. Roy, J.B. Prasanna Kumar, K.R. Anilkumar, G. Ramagopal, Humidity sensing properties of surface modified polyaniline metal oxide composites. J. Eng. 2014, Article ID 925020 (2014)

  40. A. Hashim, A. Hadi, Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukr. J. Phys. 63(8), 754–758 (2018)

    Article  Google Scholar 

  41. A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2018). https://doi.org/10.1007/s42341-018-0081-1

    Google Scholar 

  42. R. Srivastava, Effect of poly ethylene glycolon moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors thank the University of Babylon-Iraq (College of Education for Pure Sciences, Department of Physics and College of Science, Department of Physics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Abduljalil, H.M. & Hashim, A. Analysis of Structural, Optical and Electronic Properties of Polymeric Nanocomposites/Silicon Carbide for Humidity Sensors. Trans. Electr. Electron. Mater. 20, 206–217 (2019). https://doi.org/10.1007/s42341-019-00100-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00100-2

Keywords

Navigation