Skip to main content
Log in

Influence of citric acid on formation of Ni/NiO nanocomposite by sol–gel synthesis

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nickel/nickel oxide (Ni/NiO) nanocomposite was synthesized by simple sol–gel process by using nickel nitrate as a precursor and citric acid as a gelling agent. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis, Fourier transformed infra-red spectroscopy and vibrating sample magnetometer studies. The influence of citric acid on the formation of Ni/NiO composition was primarily studied by varying the mole ratios of nickel nitrate and citric acid ((N:C) : 1:1, 1:2, 1:4, 1:6 and 1:8). The XRD studies confirmed that the synthesized samples had a mixture of Ni and NiO or single phase of NiO. The SEM observations confirmed that the composites were spherical in shape with an average size of about 70 nm for 1:1 mole ratio and about 40 nm for 1:8 mole ratio samples. At lower N:C mole ratios, the obtained samples had mixture of ferromagnetic Ni and NiO, while at high N:C mole ratios, the sample consisted of almost single phase of NiO. The formation of ferromagnetic Ni was attributed to reduction of some amount of NiO by residual carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rao CNR, Govindaraj A, Vivekchand SRC (2006) Annu Rep Prog Chem Sect. A Inorg Chem 102:20–45

    Article  Google Scholar 

  2. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  Google Scholar 

  3. Wen W, Wu JM, Cao MH (2013) J Mater Chem A 1:3881–3885

    Article  Google Scholar 

  4. Fujio Y, CN Xu, Terasaki N, Ueno N (2014) J Lumin 148:89–93

    Article  Google Scholar 

  5. Lim J, Murugan P, Lakshminarasimhan N, Kim JY, Lee JS, Lee SH, Choi W (2014) J Catal 310:91–99

    Article  Google Scholar 

  6. Jiang Y, Chen D, Song J, Jiao Z, Maa Q, Zhang H, Cheng L, Zhao B, Chu Y (2013) Electrochim Acta 91:173–178

    Article  Google Scholar 

  7. Yuan F, Ni Y, Zhang L, Yuan S, Wei J (2013) J Mater Chem A 1:8438–8444

    Article  Google Scholar 

  8. Hua B, Chen W, Zhou J (2013) Sens Actuators B Chem 176:522–533

    Article  Google Scholar 

  9. Mahendraprabhu K, Miura N, Elumalai P (2013) Ionics 19:1681–1686

    Article  Google Scholar 

  10. Schelter M, Zosel J, Oelßnera W, Gutha U, Mertig M (2013) Sens Actuators B Chem 187:209–214

    Article  Google Scholar 

  11. Lee I, Choi SJ, Park KM, Lee SS, Choi S, Kim ID, Park CO (2014) Sens Actuators B Chem 197:300–307

    Article  Google Scholar 

  12. Dutta A, Datta J (2014) J Mater Chem A 2:3237–3250

    Article  Google Scholar 

  13. Cui E, Lu G (2014) Int J Hydrogen Energy 39:8959–8968

    Article  Google Scholar 

  14. Hu Q, Jacobsen T, Hansen KV, Mogensen M (2012) J Electrochem Soc 159:B811–B817

    Article  Google Scholar 

  15. Rahulan KM, Padmanathan N, Philip R, Balamurugan S, Kanakam CC (2013) Appl Surf Sci 282:656–661

    Article  Google Scholar 

  16. Deraz NM (2012) Int J Electrochem Sci 7:4608–4616

    Google Scholar 

  17. Hwang JH, Dravid VP, Teng MH, Host JJ, Elliott BR, Johnson DL, Mason TO (1997) J Mater Res 12:1076–1082

    Article  Google Scholar 

  18. Niasari MS, Davar F, Fereshteh Z (2010) J Alloys Compd 494:410–414

    Article  Google Scholar 

  19. Davar F, Fereshteh Z, Niasari MS (2009) J Alloys Compd 476:797–801

    Article  Google Scholar 

  20. Ren Y, Gao L (2010) J Am Ceram Soc 93:3560–3564

    Article  Google Scholar 

  21. Aslani A, Oroojpour V, Fallahi M (2011) Appl Surf Sci 257:4056–4061

    Article  Google Scholar 

  22. Hu C, Gao Z, Yang X (2007) J Sol–Gel Sci Technol 44:171–176

    Article  Google Scholar 

  23. Wu Y, He Y, Wu T, Chen T, Weng W, Wan H (2007) Mater Lett 61:3174–3178

    Article  Google Scholar 

  24. Thota S, Kumar J (2007) J Phys Chem Solids 68:1951–1964

    Article  Google Scholar 

  25. Teoh LG, Li KD (2012) Mater Trans 53:2135–2140

    Article  Google Scholar 

  26. Ouyang JM, Deng SP (2003) Dalton Trans 2846–2851. doi:10.1039/B304319C

  27. Proenca MP, Sousa CT, Pereira AM, Tavares PB, Ventura J, Vazquez M, Araujo JP (2011) Phys Chem Chem Phys 13:9561–9567

    Article  Google Scholar 

  28. Dimitrov DV, Zhang S, Xiao JQ, Hadjipanayis GC, Prados C (1998) Phys Rev B 58:12090–12094

    Article  Google Scholar 

Download references

Acknowledgments

Department of Science and Technology (DST), Govt. of India, New Delhi, is acknowledged for the financial support for the Fast-Track Grant (DST/FT/CS-64/2010). We extend our gratitude to CSIR-CECRI at Karaikudi and Chennai, and Central Instrumentation Facility - Pondicherry University for XRD and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perumal Elumalai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendraprabhu, K., Elumalai, P. Influence of citric acid on formation of Ni/NiO nanocomposite by sol–gel synthesis. J Sol-Gel Sci Technol 73, 428–433 (2015). https://doi.org/10.1007/s10971-014-3554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3554-7

Keywords

Navigation