Skip to main content
Log in

Effect of annealing temperatures on the structure and leakage mechanisms of BiFeO3 thin films prepared by the sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we report the fabrication of polycrystalline BiFeO3 (BFO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by the sol–gel method. The effect of annealing temperature (T a ) on the structural, optical, morphological, ferroelectric and leakage properties of the films were analyzed by X-ray diffraction (XRD), Raman spectroscopy, Atomic force microscope (AFM) and ferroelectric measurements. XRD patterns and micro-Raman spectra demonstrated that all films had a single perovskite-type rhombohedral structure. A distortion in crystal lattice constants and a contraction in unit cell volume were observed with the increase of annealing temperatures. AFM images showed that dense and uniform grains were obtained. This reveals that the film is well crystallized. The data of ferroelectric test indicated that the double remanent polarization (2P r ) value of the thin film at T a  = 600 °C was 22 μC/cm2 and the leakage current density was 9.0 × 10−8 A/cm2 at an applied electric field of 1.0 × 105 V/cm. The leakage mechanisms of thin films have been studied in order to identify the cause of high leakage currents such as Ohmic conduction, the space-charge-limited current, the Schottky emission, the Fowler–Nordheim tunneling and the Poole–Frenkel emission. In low electric field region (<1.0 × 105 V/cm), the conduction behavior was found to be dominated by Ohmic conduction for the thin film annealed at 500 °C. The Ohmic conduction and space-charge-limited current dominated the leakage behavior for the thin films at T a  = 550 and 600 °C. Fowler–Nordheim tunneling was responsible for the leakage behavior of the thin films at T a  = 550, 600 °C in high electric field region (>1.0 × 105 V/cm). The results demonstrated that the microstructure, surface morphology and ferroelectric properties of BFO thin films have a strong dependence on annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qi XD, Dho J, Tomov R, Blamire MG, MacManus-Driscoll JL (2005) Appl Phys Lett 86:062903

    Article  Google Scholar 

  2. Velasco-Davalos IV, Moretti M, Nicklaus M, Nauenheim C, Li S, Nechache R, Gomez-Yanez C, Ruediger A (2014) Appl Phys A 115:1081–1085

    Article  Google Scholar 

  3. Li YT, Fan YW, Zhang HG, Teng XX, Dong XG, Liu H, Ge XP, Li Q, Chen W, Li XA, Ge ZY (2014) J Supercond Nov Magn 27:1239–1243

    Article  Google Scholar 

  4. Muneeswaran M, Jegatheesan P, Gopiraman M, Kim IS, Giridharan NV (2014) Appl Phys A 114:853–859

    Article  Google Scholar 

  5. Zhong ZY, Ishiwara H (2009) Appl Phys Lett 95:112902

    Article  Google Scholar 

  6. Michel C, Moreau JM, Achenbach GD, Gerson R, James WJ (1969) Solid State Commun 7:701

    Article  Google Scholar 

  7. Wang Y, Nan CW (2006) Appl Phys Lett 89:052903

    Article  Google Scholar 

  8. Raghavan CM, Kim JW, Kim SS (2013) J Sol–Gel Sci Technol 67:486–491

    Article  Google Scholar 

  9. Naganuma H, Okamura S (2007) J Appl Phys 101:09M103

    Article  Google Scholar 

  10. Kim YJ, Kim JW, Kim SS (2013) J Sol–Gel Sci Technol 66:38–42

    Article  Google Scholar 

  11. Mao WW, Wang XF, Han YM, Li XA, Li YT, Wang YF, Ma YW, Feng XM, Yang T, Yang JP, Huang W (2014) J Alloy Compd 584:520–523

    Article  Google Scholar 

  12. Li DH, Sun XQ, Chuai XH, Wu ZF, Cao ZJ, Yan YF, Zhang DM (2012) J Cryst Growth 338:85–90

    Article  Google Scholar 

  13. Shuai Y, Ou X, Wu CG, Zhang WL, Zhou SQ, Bürger D, Reuther H, Slesazeck S, Mikolajick T, Helm M, Schmidt H (2012) J Appl Phys 111:07D906

    Article  Google Scholar 

  14. Simões AZ, Cavalcante LS, Riccardi CS, Varela JA, Longo E (2007) J Sol–Gel Sci Technol 44:269–273

    Article  Google Scholar 

  15. Chung CF, Lin JP, Wu JM (2006) Appl Phys Lett 88:242909

    Article  Google Scholar 

  16. Yang H, Wang H, Zou GF, Jain M, Suvorova NA, Feldmann DM, Dowden PC, DePaula RF, MacManus-Driscoll JL, Taylor AJ, Jia QX (2008) Appl Phys Lett 93:142904

    Article  Google Scholar 

  17. Simões AZ, Cavalcante LS, Moura F, Longo E, Varela JA (2011) J Alloy Compd 509:5326–5335

    Article  Google Scholar 

  18. Yan F, Lai M-O, Lu L, Zhu T-J (2011) J Phys D Appl Phys 44:435302

    Article  Google Scholar 

  19. Yang H, Jain M, Suvorova NA, Zhou H, Luo HM, Feldmann DM, Dowden PC, DePaula RF, Foltyn SR, Jia QX (2007) Appl Phys Lett 91:072911

    Article  Google Scholar 

  20. Xue X, Tan GQ (2013) J Alloy Compd 575:90–95

    Article  Google Scholar 

  21. Tang XW, Dai JM, Zhu XB, Yin LH, Ang R, Song WH, Yang ZR, Sun YP (2010) J Am Ceram Soc 93(6):1682–1687

    Google Scholar 

  22. Tang XW, Dai JM, Zhu XB, Lin JC, Chang Q, Wu DJ, Song WH, Sun YP (2012) J Am Ceram Soc 95(2):538–544

    Article  Google Scholar 

  23. Pabst GW, Martin LW, Chu Y-H, Ramesh R (2007) Appl Phys Lett 90:072902

    Article  Google Scholar 

  24. Ren YJ, Zhu XH, Zhang CY, Zhu JL, Zhu JG, Xiao DQ (2014) Ceram Int 40:2489–2493

    Article  Google Scholar 

  25. Chang HW, Yuan FT, Tien SH, Shen CY, Wang CR, Jen SU (2014) IEEE Trans Magn 50(1):2500604

    Google Scholar 

  26. Yi ML, Wang BC, Shen Q, Zhang LM (2014) J Mater Sci: Mater Electron 25:82–86

    Google Scholar 

  27. Cavalcante LS, Sczancoski JC, De Vicente FS, Frabbro MT,Siu Li M, Varela JA, Longo E (2009) J Sol–Gel Sci Technol 49:35–46

    Article  Google Scholar 

  28. Singh MK, Jang HM, Ryu S, Jo MH (2006) Appl Phys Lett 88:042907

    Article  Google Scholar 

  29. Rout D, Moon KS, Kang SJL (2009) J Raman Spectrosc 40:618–626

    Article  Google Scholar 

  30. Singh MK, Ryu S, Jang HM (2005) Phys Rev B 72:132101

    Article  Google Scholar 

  31. Raghavan CM, Kim JW, Kim SS (2014) Ceram Int 40:2281–2286

    Article  Google Scholar 

  32. Xue X, Tan GQ, Hao HF, Ren HJ (2013) Appl Surf Sci 282:432–438

    Article  Google Scholar 

  33. Shannigrahi SR, Huang A, Chandrasekhar N (2007) Appl Phys Lett 90:022901

    Article  Google Scholar 

  34. Chen ZH, He L, Zhang F, Jiang J, Meng JW, Zhao BY, Jiang AQ (2013) J Appl Phys 113:184106

    Article  Google Scholar 

  35. Chaudhuri AR, Krupanidhi SB (2008) J Appl Phys 104:104102

    Article  Google Scholar 

  36. Yang KG, Zhang YL, Yang SH, Wang B (2010) J Appl Phys 107:124109

    Article  Google Scholar 

  37. Iakovlev S, Solterbeck CH, Kuhnke M, Es-Souni M (2005) J Appl Phys 97:094901

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China under Grant Nos. 61176010 and 61172027, the Natural Science Foundation of Guangdong Province of China under Grant No. S2011010001397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, D.H., Tang, P., Yang, S.H. et al. Effect of annealing temperatures on the structure and leakage mechanisms of BiFeO3 thin films prepared by the sol–gel method. J Sol-Gel Sci Technol 73, 410–416 (2015). https://doi.org/10.1007/s10971-014-3548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3548-5

Keywords

Navigation