Skip to main content
Log in

Effect of carbon and sintering temperature on the structural and magnetic properties of SrFe12O19 nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SrFe12O19 magnetic nanoparticles with hexagonal magnetoplumbite structure were synthesized by a modified polyacrylamide gel route and characterized by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrophotometer, and vibrating sample magnetometer. To obtain large squareness ratio of SrFe12O19, a certain amount of carbon particles were introduced to the precursor solution. X-ray diffraction patterns showed that the carbon and sintering temperature accelerated hexagonal SrFe12O19 phase formation and not changed the hexagonal magnetoplumbite structure. The phase transformation process is closely correlated not only to the sintering temperature but also to the addition carbon particles. In the Fourier transform infrared spectra of SrFe12O19 sample, three obvious absorption peaks at 600, 550 and 439 cm−1 were observed. The carbon introducing to SrFe12O19 precursor solution improved the surface morphology and enhanced the squareness ratio value. The coercivity and squareness ratio of the hexagonal SrFe12O19 are closely correlated not only to the crystallite size but also to the dispersion of nanoparticles of SrFe12O19 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zi ZF, Sun YP, Zhu XB, Yang ZR, dai JM, Song WH (2008) J Magn Magn Mater 320:2746–2751

    Article  Google Scholar 

  2. Martinez Garcia R, Bilovol V, Socolovsky LM, Pirota K (2011) J Magn Magn Mater 323:3022–3026

    Article  Google Scholar 

  3. Masoudpanah SM, Seyyed Ebrahimi SA (2013) J Magn Magn Mater 342:128–133

    Article  Google Scholar 

  4. Wang SF, Lv HB, Zhou XS, Fu YQ, Zu XT (2014) Magnetic nanocomposites through polyacrylamide gel route. (2014) Nanosci Nanotechnol Lett 6:758–771

  5. Wang J, Zeng C (2004) J Cryst Growth 270:729–733

    Article  Google Scholar 

  6. Gordani GR, Ghasemi A, Saidi A (2014) Ceram Int 40:4945–4952

    Article  Google Scholar 

  7. Wang YF, Li QL, Zhang CR, Li BD (2009) J Magn Magn Mater 321:3368–3372

    Article  Google Scholar 

  8. Wang YF, Li QL, Zhang CR, Jing HX (2009) J Alloys Compd 467:284–287

    Article  Google Scholar 

  9. Yang XF, Li QL, Zhao JX, Li BD, Wang YF (2009) J Alloys Compd 475:312–315

    Article  Google Scholar 

  10. Wang ZY, Zhong LM, Lv JL, Qian HC, Zheng YL, Fang YZ, Jin ML, Xu JY (2010) J Magn Magn Mater 322:2782–2785

    Article  Google Scholar 

  11. Wang SF, Yang H, Xian T, Liu XQ (2011) Catal Commun 12:625–628

    Article  Google Scholar 

  12. Yang H, Xian T, Wei ZQ, Dai JF, Jiang JL, Feng WJ (2011) J Sol-Gel Sci Technol 58:238–243

    Article  Google Scholar 

  13. Zhang M, Yang H, Xian T, Wei ZQ, Jiang JL, Feng YC, Liu XQ (2011) J Alloys Compd 509:809–812

    Article  Google Scholar 

  14. Yang H, Zhu YH, Xian T, Jiang JL (2013) J Alloys Compd 555:150–155

    Article  Google Scholar 

  15. Wang SF, Zhang CF, Sun GA, Yuan YG, Chen L, Xiang X, Ding QP, Chen B, Li ZJ, Zu XT (2014) J Lumin 153:393–400

    Article  Google Scholar 

  16. Sahu RK, Mohanta O, Pramanik AK (2012) J Alloys Compd 532:114–120

    Article  Google Scholar 

  17. Xie TP, Xu LJ, Liu CL (2012) Powder Technol 232:87–92

    Article  Google Scholar 

  18. Li QL, Yun Y, Zhao DX, Zhang W, Zhang Y (2011) J Alloys Compd 509:1777–1780

    Article  Google Scholar 

  19. Jean M, Nachbaur V, Bran J, Breton JL (2010) J Alloys Compd 496:306–312

    Article  Google Scholar 

  20. Xie TP, Xu LJ, Liu CL, Wang Y (2013) Appl Surf Sci 273:684–691

    Article  Google Scholar 

  21. Zhang CR, Li QL, Ye Y (2009) Synth Met 159:1008–1013

    Article  Google Scholar 

  22. García-Cerda LA, Rodríguez-Fernández OS, Reséndiz-Hernández PJ (2004) J Alloys Compd 369:182–184

    Article  Google Scholar 

  23. Shepherd P, Mallick KK, Green RJ (2007) J Magn Magn Mater 311:683–692

    Article  Google Scholar 

  24. Song Q, Zhang ZJ (2004) J Am Chem Soc 126:6164–6168

    Article  Google Scholar 

  25. Liu C, Zhang ZJ (2001) Chem Mater 13:2092–2096

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51202024, 11105128) and by the NSAF joint Foundation of China (U1330103) and by the Fundamental Research Funds for the Central Universities (No. 2672012ZYGX2012J048) and by NPL, CAEP (project 2013DB05) and by Outstanding Doctoral Student Support Plan (A1098524023901001074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Fa Wang, Qingping Ding or XiaoTao Zu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SF., Zhang, C., Sun, G. et al. Effect of carbon and sintering temperature on the structural and magnetic properties of SrFe12O19 nanoparticles. J Sol-Gel Sci Technol 73, 371–378 (2015). https://doi.org/10.1007/s10971-014-3543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3543-x

Keywords

Navigation