Skip to main content
Log in

Preparation and activity evaluation of TiO2/Cu-TiO2 composite catalysts

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2/Cu-TiO2 composite catalysts were prepared by mixing hydrothermal-derived TiO2 and Cu-TiO2 nanoparticles followed by grinding and drying. These composite catalysts were characterized by powder X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, transmission electron microscop, Brunauer–Emmett–Teller surface area, UV–visible diffuse reflection spectrum, photoluminescence spectroscopy. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic rate of methylene blue under visible light irradiation. The sample of TiO2/Cu-TiO2 composite photocatalyst exhibited much higher photocatalytic activity than that of both Cu-TiO2 and pure TiO2 powders, which is mainly ascribed to the inhibition of electron-recombination in TiO2/Cu-TiO2 composite photocatalysts. 0.5 mol% Cu-TiO2 and pure TiO2 nanoparticles were mixed at a ratio of 7.7 % had the best photocatalytic activity whose apparent rate constant was about 2.2 times as large as that of pure TiO2, and about 1.2 times as large as that of 0.5 mol% Cu-TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu XL, Li GS, Yu JC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26:3031–3039

    Article  Google Scholar 

  2. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  Google Scholar 

  3. Nagaveni K, Sivalingam G, Hegde HS, Madras G (2004) Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ Sci Technol 38:1600–1604

    Article  Google Scholar 

  4. Patra Astam K, Das Swapan K, Bhaumik Asim (2011) Self-assembled mesoporous TiO2 spherical nanoparticles by a new templating pathway and its enhanced photoconductivity in the presence of an organic dye. J Mater Chem 21:3925–3930

    Article  Google Scholar 

  5. Wu CF, Qin WP, Qin GH, Qin GS, Huang SH, Zhao D (2002) Near-infrared-to-visible photon upconversion in Mo-doped rutile titania. Chem Phys Lett 366:205–210

    Article  Google Scholar 

  6. Bois L, Chassagneux F, Battie Y, Bessueille F, Mollet L, Parola S, Destouches N, Toulhoat N, Moncoffre N (2010) Chemical growth and photochromism of silver nanoparticles into a mesoporous titania template. Langmuir 26:1109–1206

    Google Scholar 

  7. Chen SF, Chen L, Gao S, Cao GY (2005) The preparation of nitrogen-doped photocatalyst TiO2−xNx by ball milling. Chem Phys Lett 413:404–409

    Article  Google Scholar 

  8. Hu YS, Forman AJ, Hazen D, Park JN, McFarl EW (2008) Pt-doped alpha-Fe2O3 thin films active for photoelectrochemical water splitting. J Mater Chem 20:3803–3805

    Article  Google Scholar 

  9. Nguyen VN, Nguyen NKT, Nguyen PH (2011) Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst. Adv Nat Sci 2:1–4

    Google Scholar 

  10. Nagaveni K, Hegde MS, Madras G (2004) Structure and photocatalytic activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by combustion method. J Phys Chem B 108:20204–20212

    Article  Google Scholar 

  11. George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li LJ, Zink JI, Madler L (2011) Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133:11270–11278

    Article  Google Scholar 

  12. Subramanian V, Kamat PV (2001) Semiconductor-metal composite nanostructures to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J Phys Chem B 105:11439–11446

    Article  Google Scholar 

  13. Cao TP, Wang CH, Shao CL, Liu YC (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27:2946–2952

    Article  Google Scholar 

  14. Qu JH, Zhao X (2008) Design of BDD-TiO2 hybrid electrode with P–N function for photoelectrocatalytic degradation of organic contaminants. Environ Sci Technol 42:4934–4939

    Article  Google Scholar 

  15. Sun DD, Tay JH, Tan KM (2003) Photocatalytic degradation of E. coliform in water. Water Res 37:3452–3462

    Article  Google Scholar 

  16. Rana S, Rawat J, Misr RDK (2005) Synthesis and characterization of nickel coated by zinc oxide bmagnetic-optical nanocomposites. Acta Biomater 1:691–703

    Article  Google Scholar 

  17. Serpone N, Maruthamuthu P, Pichat P (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol A Chem 85:247–255

    Article  Google Scholar 

  18. Ohno T, Tanigawa F, Fujihara K, Izumi S, Matsumura M (1998) Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using Iron(III) ions as electron acceptor. J Photochem Photobiol A Chem 118:41–44

    Article  Google Scholar 

  19. Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) A novel electrochemical method for synthesis of ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv Funct Mater 13:2165–2174

    Article  Google Scholar 

  20. Chen CJ, Liao CH, Hsu KC, Wu YT (2011) P–N junction mechanism on improved NiO/TiO2 photocatalyst. Catal Commun 12:1307–1310

    Article  Google Scholar 

  21. Chen SF, Zhao W, Liu W, Zhang SJ (2008) Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2. Appl Surf Sci 255:2478–2484

    Article  Google Scholar 

  22. Chen CC, Li XZ, Ma WH, Zhao JC (2002) Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J Phys Chem B 106:318–324

    Article  Google Scholar 

  23. Yu H, Irie H, Hashimoto K (2010) Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst. J Am Chem 132:6898–6899

    Article  Google Scholar 

  24. Chen SF, Liu W, Zhang SJ, Ying H (2010) Preparation and activity evaluation of relative p–n junction photocatalyst Co-TiO2/TiO2. J Sol–Gel Sci Technol 54:258–267

    Article  Google Scholar 

  25. Liu S, Liu X, Jiang RY (2010) A novel preparation of highly active iron-doped titania photocatalysts with a p–n junction semiconductor structure. J Alloys Compd 506:877–882

    Article  Google Scholar 

  26. Liu S, Wu JT, Liu XP, Jiang RY (2010) TiO2/V-TiO2 composite photocatalysts with an n-n heterojunction semiconductor structure. J Mol Catal A: Chem 332:8–92

    Article  Google Scholar 

  27. Das Swapan K, Bhunia Manas K, Bhaumik Asim (2010) Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties. Dalton Trans 39:4382–4390

    Article  Google Scholar 

  28. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  Google Scholar 

  29. Deng LX, Wang SR, Liu DY, Zhu BL, Huang WP, Wu SH, Zhang SM (2009) Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal Lett 129:513–518

    Article  Google Scholar 

  30. Zhou M, Yu J, Cheng B, Yu H (2005) Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. J Phys Chem 93:159–163

    Google Scholar 

  31. Yu G, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) The effect of calcinations temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879

    Article  Google Scholar 

  32. Yu JG, Yu JC, Leung MKP, Ho WK, Cheng B, Zhao XJ, Zhao JC (2003) Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J Catal 217:69–78

    Google Scholar 

  33. Safari Mojtaba, Nikazar Manouchehr, Dadvar Mitra (2013) Photocatalytic degradation of methyl tertbutylether (MTBE) by Fe-TiO2 nanoparticles. J Ind Eng Chem 19:1697–1702

    Article  Google Scholar 

  34. Aguilar T, Navas J, Alcántara R, Fernández-Lorenzo C, Gallardo JJ, Blanco G, Martín-Calleja J (2013) A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem Phys Lett 517:49–53

    Article  Google Scholar 

  35. Xin BF, Wang P, Ding DD, Liu J, Ren ZY, Fu HG (2008) Effect of surface species on Cu-TiO2 photocatalytic activity. Appl Surf Sci 254:2569–2574

    Article  Google Scholar 

  36. Nosaka Y, Takahashi S, Sakamoto H, NosakaReaction AY (2011) Mechanism of Cu(II)-Grafted visible-light responsive TiO2 and WO3 photocatalysts studied by means of ESR spectroscopy and chemiluminescence photometry. J Phys Chem C 115:21283–21290

    Article  Google Scholar 

  37. Rothenberger G, MGser J, Graetzel M, Serpone N, Sharma D (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107:8054–8059

    Article  Google Scholar 

  38. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G (2010) Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Colloid Interface Sci 352:68–74

    Article  Google Scholar 

  39. Colo´n G, Maicu M, Hidalgo MC, Navı´o JA (2006) Cu-doped TiO2 systems with improved photocatalytic activity. Appl Catal B 67:41–51

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Tianjin Science and technology support program (No. 12ZCZDJC35600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ya, J., Yang, N., Hu, F. et al. Preparation and activity evaluation of TiO2/Cu-TiO2 composite catalysts. J Sol-Gel Sci Technol 73, 322–331 (2015). https://doi.org/10.1007/s10971-014-3535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3535-x

Keywords

Navigation