Skip to main content
Log in

Evidence of ZrO2 sol–gel transition by gelation time and viscosity

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel transition is a stage of the sol that evolves towards the formation of a gel-like network and that exhibits gradually a mobility loss. Hence, the measurement of both viscosity and gelation time is expected to evidence the sol–gel transition occurrence. ZrO2 sols were prepared using zirconium oxychloride octahydrated as precursor material. The structures of the sols before and after gelation were characterized by TEM. Gelation time depends on the concentrations of the reactants and the aging temperature. Viscosity increases linearly with the gelation time firstly, and then increases exponentially nearby the sol–gel transition point. TEM results show the gel is granular before the sol–gel transition point, and appears as brain-like structure after this point. The determination of the sol–gel transition point is to enable the optimum aging time of a sol and to perform the next operations which determine the desired shape of gel (bulk, film, powder, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Licoccia S, Vona MLD, Traversa E, Montanaro L (1999) NMR study of sol–gel processed NASICON. J Eur Ceram Soc 19:925–929

    Article  Google Scholar 

  2. Díaz-Parralejo A, Macías-García A, Sánchez-González J, Díaz-Díez MÁ, Cuerda-Correa EM (2010) Influence of the experimental parameters on the synthesis process of yttria-doped zirconia sol–gel films. Surf Coat Technol 204:2257–2261

    Article  Google Scholar 

  3. Garcia RBR, Silva FS, Kawachi EY (2013) New sol–gel route for SiO2/ZrO2 film preparation. Colloids Surf A 436:484–488

    Article  Google Scholar 

  4. Ju X, Huang P, Xu N, Shi J (2000) Influences of sol and phase stability on the structure and performance of mesoporous zirconia membranes. J Membr Sci 166:41–50

    Article  Google Scholar 

  5. Xia C, Cao H, Wang H, Yang P, Meng G, Peng D (1999) Sol–gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide. J Membr Sci 162:181–188

    Article  Google Scholar 

  6. Chakrabarty PK, Chatterjee M, Naskar MK, Siladitya B, Ganguli D (2001) Zirconia fibre mats prepared by a sol–gel spinning technique. J Eur Ceram Soc 21:355–361

    Article  Google Scholar 

  7. Zhang Z, Liu J, Wang F, Kong J, Wang X (2011) Fabrication of bulk macroporous zirconia by combining sol–gel with calcination processes. Ceram Int 37:2549–2553

    Article  Google Scholar 

  8. Kuo C, Shen YH, Hung IM, Wen SB, Leed HE, Wang MC (2009) Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol–gel process. J Alloys Comp. 472:186–193

    Article  Google Scholar 

  9. Fenech J, Viazzi C, Bonino JP, Ansart F, Barnabe A (2009) Morphology and structure of YSZ powders: comparison between xerogel and aerogel. Ceram Int 35:3427–3433

    Article  Google Scholar 

  10. Chandradass J, Balasubramanian M (2005) Sol–gel processing of alumina–zirconia minispheres. Ceram Int 31:743–748

    Article  Google Scholar 

  11. Muñoz-Espí R, Weiss CK, Landfester K (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17:212–224

    Article  Google Scholar 

  12. Bokhimi X, Morales A, Novaro O, Lopez T, Gomez R (2000) The effect of hydrolysis initiator on the phase formation in sulfated sol–gel zirconia. Polyhedron 19:2283–2287

    Article  Google Scholar 

  13. Uchiyama H, Takagi K, Kozuka H (2012) Solvothermal synthesis of size-controlled ZrO2 microspheres via hydrolysis of alkoxides modified with acetylacetone. Colloids Surf A 403:121–128

    Article  Google Scholar 

  14. Davar F, Hassankhani A, Loghman-Estarki MR (2013) Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceram Int 39:2933–2941

    Article  Google Scholar 

  15. Yu G, Zhu L, Wang X, Liu J, Xu D (2010) Fabrication of silica-supported ZrO2 mesoporous fibers with high thermal stability by sol–gel method through a controlled hydrolysis–condensation process. Microporous Mesoporous Mater 130:189–196

    Article  Google Scholar 

  16. Mamana N, Díaz-Parralejo A, Ortiz AL, Sánchez-Bajo F, Carusoa R (2014) Influence of the synthesis process on the features of Y2O3-stabilized ZrO2 powders obtained by the sol–gel method. Ceram Int 40:6421–6426

    Article  Google Scholar 

  17. Wang X, Wu G, Zhou B, Shen J (2013) Effect of crystal structure on optical properties of sol–gel derived zirconia thin films. J Alloys Comp 556:182–187

    Article  Google Scholar 

  18. Okubo T, Takahashi T, Sadakata M, Nagamoto H (1996) Crack-free porous YSZ membrane via controlled synthesis of zirconia sol. J Membr Sci 118:151–157

    Article  Google Scholar 

  19. Chepurna I, Smotraev R, Kanibolotsky V, Strelko V (2011) Colloidal and chemical aspects of nanosized hydrated zirconium dioxide synthesized via a sol–gel process. J Colloid Interface Sci 356:404–411

    Article  Google Scholar 

  20. Joy K, Maneeshya LV, Thomas JK, Thomas PV (2012) Effect of sol concentration on the structural, morphological, optical and photoluminescence properties of zirconia thin films. Thin Solid Films 520:2683–2688

    Article  Google Scholar 

  21. Viazzi C, Deboni A, Ferreira JZ, Bonino JP, Ansart F (2006) Synthesis of yttria stabilized Zirconia by sol–gel route:influence of experimental parameters and large scale production. Solid State Sci 8:1023–1028

    Article  Google Scholar 

  22. Wang Y, Chang Q, Zhou J, Hu X (2009) Preparation of nano-sized ZrO2 by controllable sol–gel method. J Synth Cryst 38(4):1012–1017

    Google Scholar 

  23. Chen SG, Yin YS, Wang DP (2004) Experimental and theoretical investigation on the correlation between aqueous precursors structure and crystalline phases of zirconia. J Mol Struct 690:181–187

    Article  Google Scholar 

  24. Huang W, Yang J, Meng X, Cheng Y, Wang C, Zou B, Khan Z, Wang Z, Cao X (2011) Effect of the organic additions on crystal growth behavior of ZrO2 nanocrystals prepared via sol–gel process. Chem Eng J 168:1360–1368

    Article  Google Scholar 

  25. Meleshevych I, Pakhovchyshyn S, Kanibolotsky V, Strelko V (2007) Rheological properties of hydrated zirconium dioxide. Colloids Surf A 298:274–279

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by Sino-French International Science and Technology Cooperation Program (No. 2011DFA52000), National Natural Science Foundation of China (Nos. 51262013 and 51362015), the projects of Jiangxi Provincial department of Science and Technology (No. 20132BBE50019), and the projects of Jiangxi Provincial department of Education (No. KJLD13077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibing Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Q., Cerneaux, S., Wang, X. et al. Evidence of ZrO2 sol–gel transition by gelation time and viscosity. J Sol-Gel Sci Technol 73, 208–214 (2015). https://doi.org/10.1007/s10971-014-3516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3516-0

Keywords

Navigation